Changes in Bending Stiffness and Lumbar Spine Range of Movement following Mobilization and Manipulation

Nikolaos Stamos-Papastamos, MSc, Nicola J. Petty, DPT, and Jonathan M. Williams, MManipTher

Objective: The purpose of this study was to investigate the effects of lumbar rotational manipulation and lumbar central posteroanterior mobilization on lumbar bending stiffness and flexion and extension range of motion (ROM). Methods: A same-subject, repeated-measures, crossover design was used with 32 asymptomatic subjects (16 female and 16 male; mean [SD] age, 25.5 [4.5] years; weight, 65.7 [11.8] kg; and height, 1.70 [0.08] m). Each subject received mobilization or manipulation on two different occasions. Bending stiffness was calculated using a 3-point bending model using an electromagnetic tracking device and a force platform; lumbar flexion and extension ROM was measured using an electromagnetic tracking device. All variables were measured pre- and postintervention. Their effect was compared using paired tests. Results: Manipulation and mobilization did not significantly alter either bending stiffness or lumbar flexion and extension ROM (mobilization: $P = .175$, $P = .613$, and $P = .535$; manipulation: $P = .973$, $P = .323$, and $P = .439$). Bending stiffness changes were not correlated to changes in ROM (r for stiffness-flexion $= −0.102$, $P = .586$; r for stiffness-extension $= 0.014$, $P = .941$). Conclusions: Mobilization and mobilization had no significant effect on bending stiffness or flexion and extension ROM for this group of subjects. Some individual variations in effect were observed.

Low back pain (LBP) is a common health problem with important socioeconomic impact on its sufferers. The costs incurred by health care systems, including direct medical care expenses, as well as indirect costs resulting from lost time, reduced productivity, and disability allowance, are vast. Recent National Institute for Health and Clinical Excellence clinical guidelines have recommended that manual therapy (MT) may be beneficial in the treatment of patients with LBP. However, MT is a generic term that includes a wide range of interventions. The most commonly used forms of MT aimed at the lumbar spine include mobilization and manipulation. Mobilization is defined here as the use of repetitive, non-thrust forces applied to the spine; and manipulation is defined as a high-velocity small-amplitude thrust. Central posteroanterior (PA) mobilization and rotation manipulation are commonly used treatment techniques by manual therapists. The underlying mechanism attributable to the clinical success of MT is not yet established, and many theories have been suggested; however, because of poor clarity with definitions, it is unclear as to whether mobilization and mobilization have similar underlying mechanisms. A common biomechanical theory is that MT may alter spinal stiffness.

Changes in bending stiffness properties of the lumbar spine in response to PA mobilization have been investigated previously, but have shown conflicting results. Bending stiffness is a term taken from materials testing that can be applied to the spine. The spine is modeled as a beam fixed at 2 points: the pelvis and ribcage. A load is applied to a third point on the spine, and the resulting deformation is measured. Therefore, bending stiffness as applied in this study is the relationship between load and deformation modeling the spine during 3-point bending. Allison et al following 2 minutes of PA mobilization found no effect on spinal stiffness, a finding mirrored by Shirley et al using
only preconditioning mobilization. Furthermore, Goodsell et al.\(^\text{16}\) using 3 minutes of PA mobilization found no effect on stiffness. Conversely, Lee et al.\(^\text{12}\) showed that spinal stiffness was reduced after 3 minutes of PA mobilization.

These differences may be explained by the diversity in methodology. Spinal bending stiffness may be calculated from the relationship between force and displacement.\(^\text{17}\) Custom-made devices using a load cell and linear potentiometer to measure PA load and resultant linear displacement were used in some of the studies.\(^\text{14-16}\) However, it has been argued that because the geometry of the lumbar spine is curved and undergoes further deformation of the curve in response to PA loading, it is more appropriate to model bending stiffness through the measurement of curvature change.\(^\text{12,17,18}\) This method of measurement has been shown to be highly reliable with correlation coefficients between 0.97 and 0.99,\(^\text{17}\) and the differences in these modeling methods may explain the inconsistencies reported in the literature.

Previous studies\(^\text{19-21}\) provide some evidence that increased PA stiffness could be linked to LBP. Latimer et al.\(^\text{13}\) were able to show that LB suffering had elevated stiffness levels that decreased as the individual's pain level reduced. However, the authors did not statistically correlate LBP and PA stiffness. Similarly, Shirley\(^\text{22}\) found that PA stiffness decreased as LBP subsided in 15 LBP sufferers. The author found that subjects with higher pain had higher PA stiffness values, but there was no significant correlation between pain and stiffness. More recently, Ferreira et al.\(^\text{12}\) found that PA stiffness can be reduced with mobilization or manipulation, but there was no significant correlation between change in stiffness and change in pain. Furthermore, the greatest treatment benefit was observed in those with the stiffest spines. It was also reported that a high correlation was evident for stiffness, range of motion (ROM), and pain in LBP sufferers as seen by Lee et al.\(^\text{12}\) suggesting an interaction between the 3 variables in LBP sufferers.

The effect of mobilization on ROM has also shown inconsistency. McCollam and Benson\(^\text{22}\) found that 9 minutes of PA mobilization increased participants' extension ROM by 7.1%, but had no effect on flexion ROM. Lee et al.\(^\text{12}\) found a 4.3% increase in flexion and a 27.2% increase in extension following 3 minutes of PA mobilization. In contrast, Petty\(^\text{23}\) found no change in ROM following 2 minutes of PA mobilization. These discrepancies may be explained by differences in sex, as an all-female sample was used by Petty,\(^\text{23}\) which may characteristically have less initial stiffness.\(^\text{24}\) Furthermore, variations in the mobilization protocol may also explain some of the differences.

The effect of manipulation on stiffness has not been well investigated in the literature. It has been shown that thoracic manipulation had no effect on thoracic spine bending stiffness\(^\text{25,26}\); however, to the authors' knowledge, no studies have investigated the effect of lumbar manipulation on bending stiffness.

Few studies examined the effect of lumbar manipulation on ROM. Lehman and McGill\(^\text{27}\) found that manipulation resulted in significant gains in ROM, but only in a single-subject design. In a larger study, the same authors did not find consistent effects of manipulation on ROM.\(^\text{28}\) Evidence from other spinal regions suggests that manipulation could increase ROM; however, this cannot be directly extrapolated to the lumbar spine because of biomechanical differences of the anatomical regions.\(^\text{29-33}\)

To gain knowledge regarding the mechanism of effect of MT, it is necessary to investigate the relationship between stiffness and ROM. Lee et al.\(^\text{12}\) showed that the ROM correlated significantly to the measured stiffness (0.77). Although it is acknowledged that correlation cannot imply causation, this relationship aids understanding of the response to MT.

It remains unclear whether different MT interventions are interchangeable because of a consistent response and underlying mechanism of action. Recent evidence suggests that the clinical response to manipulation may be marginally different to that of PA mobilization in LBP patients.\(^\text{34}\) Therefore, it needs to be determined if mobilization and manipulation have different effects on stiffness and ROM and if any changes correlate to changes in ROM. Past research\(^\text{12}\) identified significant changes on bending stiffness after PA mobilization on subjects without LBP. In addition, earlier manipulation studies did not correlate changes in ROM and changes in bending stiffness on either LBP patients\(^\text{27,28}\) or asymptomatic subjects.\(^\text{25,26}\) It was hypothesized that a direct comparison of the 2 techniques on the same asymptomatic subjects could possibly clarify the interaction of bending stiffness and ROM, without pain being present. Moreover, any changes on stiffness and ROM after the application of either technique on asymptomatic subjects could not be due to pain relief.

The aims of the present study were to:

1. Investigate and compare the immediate effects of lumbar PA mobilization and lumbar manipulation on spinal bending stiffness and lumbar ROM.
2. Assess the relationship between changes of bending stiffness and lumbar ROM.

METHODS

Subjects

Thirty-two asymptomatic subjects, 16 female and 16 male, were recruited by poster advertisement from the School of Health Professions, University of Brighton. All subjects were undergraduate students in the University of Brighton. Ethical approval for the study was granted by the School Research Ethics and Governance Panel, and all subjects provided written informed consent. Subjects were excluded if they had any history of back pain, spinal surgery, tumors, or any other disorders that may be aggravated by the testing procedures.\(^\text{35,36}\) To achieve a
power of 0.8 with an α level set at 0.05, a sample size calculation based on the literature revealed that a sample of 31 was necessary.

Study Design

A same-subject, repeated-measures, crossover design was used. Dependent variables were bending stiffness and lumbar ROM. These measures were taken before and after the mobilization or manipulation intervention, as shown in Figure 1. All measurements and interventions were performed by the researcher (NSP) who had specialist training in MT and more than 5 years of clinical experience.

Instrumentation

A custom-made wooden and padded treatment plinth securely screwed on a nonconductive force platform (Advanced Mechanical Technology Inc, Watertown, MA) was used to quantify the magnitude of PA force applied to the spine. A similar setup has been used in previous studies.

An electromagnetic tracking system (Fastrak; Polhemus Navigation, Colchester, VT), recording at 100 Hz, was used to measure spinal angular displacement during force application for the calculation of bending stiffness and to measure lumbar flexion and extension ROM. This instrumentation has been shown to be highly reliable to ±0.2° as well as highly accurate when compared with radiographs for the measurement of lumbar ROM.

Interventions

Subjects lay prone on the plinth that was mounted on the force platform, and the location of spinous processes L1, L4, and S1 was marked by the researcher (NSP). Subject position was standardized by marking the plinth at the toes and acromioclavicular joints. Electromagnetic sensors were adhered to the skin overlying the spinous processes of S1 and L1 using double-sided tape and reinforced by additional tape. Before any data collection, 3 central PA pressures were applied to the spinous process of L4 with the subject in prone position. This was done to familiarize the subjects with the PA pressures, to ensure that they could tolerate the forces applied and to precondition the spine preventing any artifact readings. Subsequently, 5 central PA pressures were applied to L4 to collect measurements of force and angular displacement for the calculation of bending stiffness. Lumbar flexion and extension ROM was measured using a standardized protocol, with total ROM measured relative to a standing reference position. Markers were taped to the floor, 20 cm apart, to standardize the position of the feet; and subjects were asked to look directly ahead, standing erect with arms by the sides and knees straight. This position was adopted as their zero reference position, and all ROM measurements were calculated with respect to this. The subjects were given standard instructions to bend forward and backward as far as possible, keeping knees fully extended. The data collected represented the difference in angular displacement between the 2 sensors, thereby overcoming the problem of pelvis contribution to the movement.

Subjects then received 1 of the 2 MT interventions, randomized by coin toss. Following a minimum of 48 hours, the subjects returned and received the alternate intervention. No attempt was made to restrict subject activity between sessions. The manipulation intervention involved a rotational manipulative thrust technique on both sides of the L4/5 segmental level as described by Gibbons and Tehan. The mobilization intervention consisted of 3 sets of 1 minute of PA mobilization into the researcher’s perceived resistance, aiming at grade IV+ as described by Maitland. The researcher throughout the application of the technique used a plisiform contact, and all subjects were lying prone. A mobilization frequency of 2 Hz was maintained by a metronome. Following each intervention, PA bending stiffness and lumbar ROM were remeasured.
Table 1. The mean (SD) stiffness and ROM measures pre- and postmobilization and manipulation with t test P values to measure significance

<table>
<thead>
<tr>
<th>Mobilization</th>
<th>Pre</th>
<th>Post</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness (N/m)</td>
<td>20.78</td>
<td>25.05</td>
<td>.175</td>
</tr>
<tr>
<td>Flexion (°)</td>
<td>54.11</td>
<td>54.81</td>
<td>.613</td>
</tr>
<tr>
<td>Extension (°)</td>
<td>22.0</td>
<td>23.66</td>
<td>.535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manipulation</th>
<th>Pre</th>
<th>Post</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness (N/m)</td>
<td>23.14</td>
<td>23.04</td>
<td>.973</td>
</tr>
<tr>
<td>Flexion (°)</td>
<td>54.22</td>
<td>56.07</td>
<td>.323</td>
</tr>
<tr>
<td>Extension (°)</td>
<td>27.02</td>
<td>28.56</td>
<td>.439</td>
</tr>
</tbody>
</table>

All measurements were performed by an independent researcher who volunteered to operate the software after a small training period, and all data processing was calculated by automated computer processes.

Data Analysis

Posteroanterior bending stiffness was calculated from 5 PA loading cycles applied with the subject lying prone on the plinth mounted on the force platform. All loading cycles for stiffness calculations were completed by the same experienced manual therapist who attempted to provide identical loading cycles. Angular displacement data, derived from the electromagnetic tracking device, was divided by PA force data from the force plate for the second, third, and fourth PA loading cycle. All data were processed and calculated using Windows Excel (Microsoft, Redmond, Wash, 2007). Lumbar flexion and extension ROM measurements were calculated using the mean of 6 movement trials. Paired t tests were performed (SPSS, 16.0, Chicago, IL) to examine the effects of intervention on bending stiffness and lumbar ROM. A 2-way analysis of variance determined the effect of the technique order. Pearson correlation analysis was used to determine the relationship between stiffness and lumbar ROM.

Discussion

The results of the study show that PA mobilization and spinal manipulation did not significantly alter bending stiffness or lumbar flexion and extension ROM. The study’s findings offer the first insight into the effects of manipulation on bending stiffness in asymptomatic subjects. They are in agreement with studies investigating bending stiffness in other anatomical regions.25,26 It appears that manipulation is unable to influence spinal bending stiffness in asymptomatic subjects.

The results of this study that mobilization had no effect on bending stiffness are in agreement with those of Allison et al14 and Goodsell et al16; on the other hand, they are in contrast to those of Lee et al.12 This may be due to differences in the stiffness measurement methodology, making direct comparison of stiffness values not possible, or due to differences in the subjects’ characteristics. The finding that lumbar manipulation had no effect on range of movement is in agreement with previous manipulation studies,25,26 but is in contrast to Lehman and McGill.27,28 The reason for this difference may lie in the sample characteristics and the fact that all their subjects were experiencing LBP. However, a trend was noted in that the participants who increased their ROM were those who initially had higher Oswestry disability scores, suggesting that initial characteristics may be important in predicting the effect.28

Further observation of the data and analysis of the present study revealed some possible trends in response to treatment. Identification of individual characteristics to detect those likely to respond was carried out using the available data from the study. It appeared that baseline ROM influenced the likelihood of the subject to respond to the interventions. The authors hypothesized that baseline ROM could determine the outcome of interven- tion, and this was investigated. Seventy-three percent of those whose initial lumbar extension was less than 20° showed an increase in extension after PA mobilization (Fig 2). Seventy-four percent of the subjects with an initial range of less than 56° of lumbar flexion increased their ROM by 12% following mobilization. Fifty-eight percent of subjects with more than 56° flexion ROM showed an 11% decrease in ROM following mobilization (Fig 3). Similar trends were demonstrated with manipulation. In those subjects with less than 27° of initial extension, 62.5% increased their extension ROM with manipulation, whereas in those with greater than 27° extension, 58% decreased extension ROM following manipulation (Fig 4). Almost half of the participants (56.3%) who had initial

There was no significant correlation between changes on bending stiffness and ROM (Pearson r for stiffness-flexion = −0.102, P = .586; Pearson r for stiffness-extension = 0.014, P = .941).

Results

All data were normally distributed as found by the Kolmogorov-Smirnov test (P = .115-.998). Subjects’ mean (SD) age was 25.5 (4.5) years, and body mass index was 22.05 (3.78) kg/m². The mean (SD) magnitude of force measured during PA mobilization intervention was 154.3 (12.4) N. The analysis of variance showed that technique order had no effect on the results (P = .804). The effects of mobilization and manipulation on the variables of stiffness and lumbar ROM can be seen in Table 1. Manipulation and mobilization had no effect on bending stiffness or lumbar flexion and extension ROM of the group as a whole.
flexion ROM less than 54° increased flexion range with manipulation, whereas 58% of those who had more than 53.6° of initial flexion ROM decreased flexion ROM following manipulation (Fig 5).

In addition, some links were observed between changes in stiffness and changes in lumbar ROM. Fifty percent of subjects in whom manipulation reduced bending stiffness showed large gains in extension ROM (67%). Fifty-seven percent of subjects in whom mobilization increased bending stiffness showed a decrease in extension ROM (23%).

These findings agree with the trends identified in Lehman and McGill's study, which suggests that those with less initial ROM are more likely to respond to manipulation.

The lack of effect of mobilization on ROM is in agreement with Petty's study but in contrast with the findings of Lee et al. Initial ROM may help explain the discrepancies observed. Subjects in the current study with initial extension ROM greater than 20° were less likely to increase ROM following mobilization. This is in agreement with Petty whose sample demonstrated premobilization extension ROM greater than 35° and had no response to mobilization. Conversely, other studies did show an improvement in lumbar flexion and extension following mobilization. Lee et al. found significant gains in flexion following a similar mobilization protocol to that used in the present study. Importantly, those participants in the study by Lee et al.
demonstrated small initial ranges (less than the cutoff identified in this study) with a mean premobilization range of 58.3° of flexion and 18° of extension, which may explain the difference between this and the present study. McCollam and Benson also found significant improvements in lumbar extension after PA pressures with pre extension range of 28°. The treatment protocol was given for a longer period (9 minutes) and multiple segments were mobilized, which may also help explain the conflicting results.

Limitations
The present study was conducted using young asymptomatic subjects and therefore cannot be extrapolated to back pain sufferers or to the general population. Asymptomatic subjects were selected to avoid the confusion of cause and effect. The study’s aim was to investigate the effect of mobilization and manipulation on stiffness and ROM, not to study the effects of pain relief (common following mobilization and manipulation on painful subjects) on stiffness and ROM. This enables more specific conclusions to be drawn about the intervention on stiffness and ROM directly, not secondarily due to pain relief. This study investigated the immediate effect of MT, preventing the generalization to more long-term effects. The measurement of stiffness requires the application of a force delivered by the investigator and therefore was not strictly controlled.

Fig 4. Data series showing effect of manipulation on subjects displaying an initial extension ROM of less than 27°.

Fig 5. Data series showing effect of manipulation on subjects displaying an initial flexion ROM of less than 54°.
This may have affected the stiffness measurements, as the stiffness response is not linear; however, it has been shown that experienced manual therapists are remarkably consistent in the application of PA force. It is possible that the preconditioning pressures might have affected any initial stiff segments before the calculation of stiffness and contributed to the results of the study. However, preconditioning has been shown to be important because of the spine's viscoelastic properties; and the stiffness values collected during these preconditioning loads have been reported to be erroneous. No attempts were made to restrict normal activities between interventions; thus, it is possible that these activities may have affected the results of the study. This could have contributed to the discrepancies between the cutoff points of ROM in mobilization and manipulation. The authors acknowledge that this might not be the case for other samples. There is a risk of operator bias because the independent researcher, who participated in the data collection, was not blinded to the measurements. However, this risk was minimized by the use of automated computer algorithms for data processing.

CONCLUSION

The results of the present study show that PA mobilization and rotational spinal manipulation as applied to young asymptomatic subjects did not significantly alter PA bending stiffness or lumbar ROM. No clear relationship between stiffness and ROM could be identified. Further analysis suggests possible differences in response to mobilization and manipulation depending on the magnitude of motion before the procedure. Further work investigating the effects of manipulation and mobilization should be reserved for subjects whose baseline characteristics include limited ROM.

REFERENCES

21. Ferreira M, Ferreira P, Latimer J, Herbert R, Maher C, Refshauge K. Relationship between spinal stiffness and...