Molecular modeling directed by an interfacial test apparatus for the evaluation of protein and polymer ingredient function in situ

Collins, G.W., Patel, Avani, Dilley, Alan and Sarker, D.K. (2008) Molecular modeling directed by an interfacial test apparatus for the evaluation of protein and polymer ingredient function in situ Journal of Agricultural and Food Chemistry, 56 (10). pp. 3846-3855. ISSN 0021-8561

[img] Text
Molecular_modeling_directed_by_an_interfacial_test_apparatus_2008.pdf - Accepted Version
Restricted to Registered users only

Download (871kB)

Abstract

A simplified apparatus is described that measures the damping of a suspended measuring device. The movement of the device (bob) is damped by the properties of the air–water surface adsorbed material. Its value lies in describing the surface chemomechanical properties of ingredients and excipients used in food, nutraceutical, cosmetic (cosmeceutical), and natural drug-food product formulations that traverse the food sciences. Two surfactants, two food and drug-grade polymers, and five naturally occurring food and serum proteins were tested and used to estimate and model interfacial viscoelasticity. Equilibration times of >15 min were found to give sufficiently stable interfaces for routine assessment. The viscoelasticity of the air–water interface was estimated with reference to model solutions. These model solutions and associated self-assembled interfacial nanostructured adsorbed layers were fabricated using a preliminary screening process with the aid of a specialized foaming apparatus (C300 values), surface tension measurements (23–73 mN/m), and referential surface shear and dilation experiments. The viscoelasticity measured as a percentage of surface damping (D) of a pendulum was found to range from 1.0 to 22.4% across the samples tested, and this represented interfacial viscosities in the range of 0-4630 µNs/m. The technique can distinguish between interfacial compositions and positions itself as an easily accessible valuable addition to tensiometric and analytical biochemistry-based techniques.

Item Type: Journal article
Additional Information: (c) American Chemical Society 2008
Subjects: F000 Physical Sciences > F100 Chemistry
DOI (a stable link to the resource): 10.1021/jf800122k
Faculties: Faculty of Science and Engineering > School of Pharmacy and Biomolecular Sciences
Depositing User: editor spbs
Date Deposited: 11 Nov 2010 10:45
Last Modified: 21 May 2014 11:01
URI: http://eprints.brighton.ac.uk/id/eprint/7884

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year