Causative factors behind poloxamer 188 (Pluronic F68, Flocor™)-induced complement activation in human sera A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels

Moghimi, S.M., Hunter, A.C., Dadswell, C.M., Savay, S., Alving, C.R. and Szebeni, J. (2004) Causative factors behind poloxamer 188 (Pluronic F68, Flocor™)-induced complement activation in human sera A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels Biochimica et biophysica acta (BBA) - molecular basis of disease, 1689 (2). pp. 103-113. ISSN 0925-4439

Full text not available from this repository.

Abstract

Poloxamer 188 is a complex polydisperse mixture of non-ionic macromolecules. Adverse non-IgE-mediated hypersensitivity reactions occur in some individuals following intravenous injection of poloxamer 188-based pharmaceuticals, presumably via complement activation. Here we have delineated potential causal chemical and biological interactive factors behind poloxamer 188-induced complement activation in human serum specimens. We identified the molecular constituents inherent in poloxamer 188 preparations and studied their effect on generation of the two complement split products, SC5b-9 and Bb. Poloxamer 188 activated complement at sub-micellar concentrations and the results indicated the potential involvement of all three known complement activation pathways. The poloxamer-induced rise of SC5b-9 in human sera was abolished in the presence of a recombinant truncated soluble form of complement receptor type 1, thus confirming the role of C3/C5 convertases in the activation process. Poloxamer 188-mediated complement activation is an intrinsic property of these macromolecules and was independent of the degree of sample polydispersity, as opposed to other non-polymeric constituents. Poloxamer 188 preparations also contained unsaturated chains of diblock copolymers capable of generating SC5b-9 in human sera; this effect was terminated following the removal of double bonds by catalytic hydrogenation. By quasi-elastic light scattering, we established interaction between poloxamer and lipoproteins; interestingly, poloxamer-induced rise in SC5b-9 was significantly suppressed when serum HDL and LDL cholesterol levels were increased above normal to mimic two relevant clinical situations. This observation was consistent with previously reported data from patients with abnormal or elevated lipid profiles where no or poor complement activation by poloxamer 188 occurred. Our findings could provide the basis of novel approaches to the prevention of poloxamer-mediated complement activation.

Item Type:Journal article
Uncontrolled Keywords:Complement activation; Non-ionic surfactant; Poloxamer; HDL; LDL; Non-IgE-mediated hypersensitivity
Subjects:C000 Biological and Biomedical Sciences > C700 Molecular Biology, Biophysics and Biochemistry
DOI (a stable link to the resource):10.1016/j.bbadis.2004.02.005
Faculties:Faculty of Science and Engineering > School of Pharmacy and Biomolecular Sciences
ID Code:674
Deposited By:editor spbs
Deposited On:08 Nov 2007
Last Modified:05 Feb 2014 14:28

Repository Staff Only: item control page