The influence of periodic islands in the flow on a scalar tracer in the presence of a steady source

Turner, M.R., Thuburn, J. and Gilbert, A.D. (2009) The influence of periodic islands in the flow on a scalar tracer in the presence of a steady source Physics of Fluids, 21 (6). ISSN 1089-7666

This is the latest version of this item.

[img]
Preview
Text
islands_steady_source_2.pdf - Submitted Version

Download (7MB) | Preview

Abstract

In this paper we examine the influence of periodic islands within a time periodic chaotic flow on the evolution of a scalar tracer. The passive scalar tracer is injected into the flow field by means of a steady source term. We examine the distribution of the tracer once a periodic state is reached, in which the rate of injected scalar balances advection and the molecular diusion kappa. We study the two-dimensional velocity field u(x, y, t) = 2 cos2(omega*t)(0, sin x) + 2 sin2(omega*t)(sin y, 0). As omega is reduced from an O(1) value the flow alternates through a sequence of states which are either globally chaotic, or contain islands embedded in a chaotic sea. The evolution of the scalar is examined numerically using a semi-Lagrangian advection scheme. By time-averaging diagnostics measured from the scalar field we find that the time-averaged length of the scalar contours in the chaotic region grow like kappa^{-1/2} for small kappa, for all values of omega, while the dependence of the time-averaged maximum scalar value, C_max, depends strongly on omega as kappa varies. In the presence of islands C_max is proportional to kappa^{-alpha} for some alpha between 0 and 1 and with kappa small, and we demonstrate that there is a correlation between alpha and the area of the periodic islands, at least for large omega. The limit of small omega is studied by considering a flow field that switches from u = (0, 2 sin x) to u = (2 sin y, 0) at periodic intervals. The small omega limit for this flow is examined using the method of matched asymptotic expansions. Finally the role of islands in the flow is investigated by considering the time-averaged effective diffusion of the scalar field. This diagnostic can distinguish between regions where the scalar is well mixed and regions where the scalar builds up.

Item Type: Journal article
Additional Information: © The Author(s) and American Institute of Physics, 2009
Subjects: G000 Computing and Mathematical Sciences > G100 Mathematics
DOI (a stable link to the resource): 10.1063/1.3159615
Faculties: Faculty of Science and Engineering > School of Computing, Engineering and Mathematics > Engineering and Product Design Research > Automotive Engineering
Depositing User: Dr Matthew Turner
Date Deposited: 26 Nov 2009
Last Modified: 21 May 2014 11:01
URI: http://eprints.brighton.ac.uk/id/eprint/6476

Available Versions of this Item

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year