Bacterial adhesion to phosphorylcholine-based polymers with varying cationic charge and the effect of heparin pre-adsorption

Rose, S.F., Okere, S., Hanlon, G.W., Lloyd, A.W. and Lewis, A.L. (2005) Bacterial adhesion to phosphorylcholine-based polymers with varying cationic charge and the effect of heparin pre-adsorption Journal of Materials Science: Materials in Medicine, 16 (11). pp. 1003-1015. ISSN 1573-4838

Full text not available from this repository.

Abstract

Abstract The steady increase in the use of medical implants and the associated rise of medical device infections has fuelled the need for the production of biomaterials with improved biocompatibility. 2-(methacryloyloxyethyl phosphorylcholine) (MPC) based coatings have been used to improve the biocompatibility of a number of different medical devices. Recent studies have investigated the use of a phosphorylcholine modified with cationic charge to encourage specific bio-interaction. Until now the affect of cationic charge incorporation in MPC copolymers on bacterial adhesion has not been investigated. This study attempts to address this by investigating the affect of charge on four different strains of bacteria commonly associated with medical device infections. In addition, the affect of pre-incubating these MPC-copolymers in heparin is also evaluated as this has previously been shown to improve biocompatibility and reduce bacterial adhesion. Bacterial adhesion was assessed by ATP bioluminescence and Scanning Electron Microscopy (SEM). Results suggest that bacterial adhesion generally increased with increasing cationic charge. When samples were however, pre-incubated with heparin a significant reduction in bacterial adhesion to the MPC-based samples was observed. The heparin remained bound and effective at reducing bacterial adhesion to the cationic MPC-based samples even after three weeks incubation in PBS. To conclude, the MPC-based cationic polymer coatings complexed with heparin may provide a promising solution to reduce medical device related infections.

Item Type: Journal article
Subjects: C000 Biological and Biomedical Sciences
DOI (a stable link to the resource): 10.1007/s10856-005-4755-y
Faculties: Faculty of Science and Engineering > School of Pharmacy and Biomolecular Sciences
Depositing User: editor spbs
Date Deposited: 29 Nov 2006
Last Modified: 06 Nov 2013 16:08
URI: http://eprints.brighton.ac.uk/id/eprint/593

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year