Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through pseudomonas aeruginosa biofilms

Hanlon, G.W., Denyer, S.P., Olliff, C.J. and Ibrahim, L.J. (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through pseudomonas aeruginosa biofilms Applied and Environmental Microbiology, 67 (6). pp. 2746-2753. ISSN 1098-5336

Full text not available from this repository.

Abstract

To cause an infection, bacteriophages must penetrate the alginate exopolysaccharide of Pseudomonas aeruginosa to reach the bacterial surface. Despite a lack of intrinsic motility, phage were shown to diffuse through alginate gels at alginate concentrations up to 8% (wt/vol) and to bring about a 2-log reduction in the cell numbers in 20-day-old biofilms of P. aeruginosa. The inability of alginate to act as a more effective diffusional barrier suggests that phage may cause a reduction in the viscosity of the exopolysaccharide. Samples (n = 5) of commercial alginate and purified cystic fibrosis (CF) alginate were incubated with 2 × 108 purified phage per ml for 24 h at 37°C. After incubation the samples and controls were subjected to rheological analysis with a Carrimed controlled stress rheometer. The viscosities of phage-treated samples were reduced by up to 40% compared to those of controls incubated in the absence of phage. The experiment was repeated by using phage concentrations of 1010 and 1012 phage per ml and samples taken for analysis at intervals up to 4 h. The results indicated that there was a time- and concentration-dependent reduction in viscosity of up to 40% compared to the viscosities of the controls. Commercial and purified CF alginate samples, both phage treated and untreated, were subjected to gel filtration chromatography by using Sephacryl High Resolution S-400 medium in order to obtain evidence of degradation. The results demonstrated that alginate treated with phage had a lower molecular weight than untreated alginate. The data suggest that bacteriophage migration through P. aeruginosa biofilms may be facilitated by a reduction in alginate viscosity brought about by enzymic degradation and that the source of the enzyme may be the bacterial host itself.

Item Type:Journal article
Subjects:C000 Biological and Biomedical Sciences > C500 Microbiology
B000 Health Professions > B100 Anatomy Physiology and Pathology
A000 Medicine > A300 Clinical Medicine
DOI (a stable link to the resource):10.1128/AEM.67.6.2746-2753.2001
Faculties:Faculty of Science and Engineering > School of Pharmacy and Biomolecular Sciences
ID Code:582
Deposited By:editor spbs
Deposited On:08 Nov 2007
Last Modified:06 Dec 2013 10:12

Repository Staff Only: item control page