Geometric control and tuneable pore size distribution of buckypaper and buckydiscs

Whitby, R.L.D., Fukuda, T., Maekawa, T., James, S.L. and Mikhalovsky, S.V. (2008) Geometric control and tuneable pore size distribution of buckypaper and buckydiscs Carbon, 46 (6). pp. 949-956. ISSN 0008-6223

Full text not available from this repository.

Abstract

The fabrication of buckypaper from unfunctionalised multi-walled carbon nanotubes (MWCNTs) without the aid of surfactants or surface modification techniques is accomplished through a novel and quick frit compression method. The dimensions can be controlled through the size of the syringe housing and the through the mass of carbon nanotubes added. Their thicknesses are typically much larger than surfactant-cast buckypaper, which have been synthesised from 120 μm up to 650 μm; buckypaper with thicknesses larger than 500 μm we call buckydiscs. Buckypaper and buckydiscs are mechanically robust to handle, flexible, stable in solvents and possess larger porosities than Triton-X100 cast buckypaper. They also exhibit a memory effect when bending wetted samples, returning to their former geometry on drying. Buckypaper and buckydiscs were studied by mercury intrusion porosimetry to reveal a distribution of mesopores and small macropores that is dependant on the surface tension of the casting solvent and therefore tuneable. Moreover, the frit compression system allows control over the 3-dimensional geometry of the buckydiscs during the casting process.

Item Type: Journal article
Subjects: F000 Physical Sciences > F200 Materials Science
DOI (a stable link to the resource): 10.1016/j.carbon.2008.02.028
Faculties: Faculty of Science and Engineering > School of Pharmacy and Biomolecular Sciences > Biomedical Materials
Depositing User: Ray Whitby
Date Deposited: 18 Jun 2008
Last Modified: 31 Mar 2014 15:09
URI: http://eprints.brighton.ac.uk/id/eprint/4806

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year