5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion

Chatterjee, P.K., Chatterjee, B.E., Pedersen, H., Sivarajah, A., McDonald, M.C., Mota-Filipe, H., Brown, P.A.J., Stewart, K.N., Cuzzocrea, S., Threadgill, M.D. and Thiemermann, C. (2004) 5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion Kidney International, 65 (2). pp. 499-509. ISSN 1523-1755

Full text not available from this repository.

Official URL: http://www.nature.com/ki/journal/v65/n2/full/44942...

Abstract

Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the development of ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the effects of a water-soluble and potent PARP inhibitor, 5-aminoisoquinolinone (5-AIQ), on the renal injury and dysfunction caused by oxidative stress of the rat kidney in vitro and in vivo. Methods Primary cultures of rat renal proximal tubular cells, subjected to oxidative stress caused by hydrogen peroxide (H2O2), were incubated with increasing concentrations of 5-AIQ (0.01 to 1 mmol/L) after which PARP activation, cellular injury, and cell death were measured. In in vivo experiments, anesthetized male Wistar rats were subjected to renal bilateral ischemia (45 minutes) followed by reperfusion (6 hours) in the absence or presence of 5-AIQ (0.3 mg/kg) after which renal dysfunction, injury and PARP activation were assessed. Results Incubation of proximal tubular cells with H2O2 caused a substantial increase in PARP activity, cellular injury, and cell death, which were all significantly reduced in a concentration-dependent by 5-AIQ [inhibitory concentration 50 (IC50) approx 0.03 mmol/L]. In vivo, renal I/R resulted in renal dysfunction, injury, and PARP activation, primarily in the proximal tubules of the kidney. Administration of 5-AIQ significantly reduced the biochemical and histologic signs of renal dysfunction and injury and markedly reduced PARP activation caused by I/R. Conclusion This study demonstrates that 5-AIQ is a potent, water soluble inhibitor of PARP activity, which can significantly reduce (1) cellular injury and death caused to primary cultures of rat proximal tubular cells by oxidative stress in vitro, and (2) renal injury and dysfunction caused by I/R of the kidney of the rat in vivo.

Item Type:Journal article
Uncontrolled Keywords:5-aminoisoquinolinone; ischemia; oxidative stress; poly (ADP-ribose) polymerase; rat; reperfusion-injury
Subjects:B000 Health Professions > B100 Anatomy Physiology and Pathology
DOI (a stable link to the resource):10.1111/j.1523-1755.2004.00415.x
Faculties:Faculty of Science and Engineering > School of Pharmacy and Biomolecular Sciences
ID Code:424
Deposited By:editor spbs
Deposited On:06 Nov 2007
Last Modified:05 Jun 2013 10:49

Repository Staff Only: item control page