
EFFICIENT SEMANTIC PARSING OF CONVERSATIONAL
SPEECH

Michel Généreux
Information Technology Research Institute, Brighton, United Kingdom

Abstract

This paper presents an empirical method for mapping speech input to shallow semantic representa-
tion. Semantic parsing is realized through a bottom-up type parsing paradigm where the operators
are based on semantic concepts, obtained from a lexicon. A statistically trained model specializes
the parser, by guiding the runtime beam-like search of possible parses. The semantic representa-
tion is a logical form equivalent to a Discourse Representation Structure (DRS). Each output of the
parser is given a probability according to how similar, given a contextual word similarity measure,
the parsing process for the input was to those collected during the training phase. Contextual in-
formation during parsing allows for better coverage of large domains. The non syntactic but very
semantic nature of the parser would make it very tolerant to noisy (recognized) speech input. Shal-
low parsing using First-Order Logic (FOL) allows for fast but meaningful enough processing of the
input, which makes the parser well suited for real-time Spoken Dialogs Systems (SDS).

Keywords: Semantics, Corpus, Discourse

1. Introduction and Motivation

For task oriented systems, the quality of the spoken interaction between man and machine
have seen constant progress over the last decade. Today, lower word error rate in speech
technology, expertise gained in dialog management, more flexible natural language gen-
eration and better speech synthesis allows us to take dialog systems to the next level:
open (or very broad) domain of interaction. To cope with the complexity of open domain
and noisy speech input, semantic parsers will have to put a strong emphasis on context
to supplement for syntactical analysis, and outputs a suitable meaning representation for
discourse to be further interpreted. We present a parser with strong contextual capabilities
that delivers a DRS as output.

The choice of our bottom-up parser is motivated by its manageability and its simi-
larity to how humans parse a sentence [Hermjakob and Mooney (1997)]: compositionally
build meaning from left to right by adding concepts as they appear (INTRODUCE), com-
bining them (COREF and DROP operations) and keeping in mind contextual information
(SHIFT operation). Finally, FOL [Light and Schubert (1994)] offers a reasonably deep
semantic representation and a convenient way to translate DRSs, for carrying out sensible
discourse conversations.

2. System Architecture

We propose an approach in which a bottom-up parser similar to [Mooney and Tang
(2000)] is combined with a statistical model. Mapping input to logical form is triggered
by keywords (INTRODUCE operation) from a semantic lexicon collected from training.
Words in the input not in the semantic lexicon are used as contextual information (SHIFT
operation).

Figure 1: Parser Architecture

Three other operations are available to the
parser: co-referencing variables (COREF), drop-
ing one term into the argument of another (DROP)
and giving scope to quantifiers (SCOPE). In the
parser, all operations are conducted within a par-
ticular context, a context being a word or group of
words following (in the strictly left-to-right sense)
a parsing operation. The output of the parser is a
a partially resolved DRS, ready to be processed by
a Discourse Manager. Figure 1 shows the various
elements of the parser.

3. Overview of the Parsing Process

This section is meant to give a flavor of the parsing process and provides a ”light” in-
troduction to the parser. All statistical considerations are for the moment deferred to
section 5. The parser used is a variant of aShift-Reduceparser (only the SHIFT operation
has been retained).

The Input StringThe input string is a list of words to give an interpretation for. When no
actions are applicable and the input string is empty, then the parsing process is completed.
Typically, one word is removed from the list for a SHIFT action and one or more for an
INTRODUCE action. It also provides some contextual information while applying a
parsing action. Example 1 shows an input string.

(1) [I,read,The,Little,Mermaid,Did,you,write,it]

The Parse StackThe parse stack is the actual parse state, the current interpretation of
the input string found so far. It is a list of binary elements, each element representing a
combination of the introduced predicate (or concept) with its context of introduction. The
context gives partial (but useful) information on the words following the concept at the
time of introduction. Each concept must be in the semantic lexicon. Here is the general
format of the parse stack:[concept1:[context1],concept2:[context2],. . . ,start:[context]]

Thestart predicate is there only to provide room for words from the input string which
would be shifted at the very beginning of the parse; it does NOT contribute to the meaning
of the input phrase. The representation of operators, parse state and final state follow.
SHIFT(word to be shifted) A SHIFT action simply puts the first word from the input
string at the end of the context of the concept on the top of the parse stack.
INTRODUCE(concept to be introduced) The INTRODUCE action takes a concept from
the semantic lexicon (the lookup is triggered by keywords in the input) and puts it on the
top of the parse stack, initializing its context of introduction to the word (or list of words)
that triggered this concept. These concepts will then participate to the meaning represen-
tation.

DROP(sourceterm, target term) The DROP action attempts to place a term from the
parse stack as argument to another term of the parse stack. The context of the source term
is lost in the process. This action has no effect on the input string.
COREF(variable1, variable2) The COREF action attempts to co-reference two vari-
ables, in the case at least one of them is underspecified (). The result is that they become
specified (they have the same name). This action has no effect on the input string.
SCOPE(sourceterm, target term) The SCOPE action is similar to the DROP action,
with the two exceptions that it applies only to quantifiers and that the ’droping’ is slightly
different. For example,SCOPE(exists(A,human(A)),forall(B,thing(B)))results in the target term
beingforall(B,exists(A,(human(A),thing(B)))). This action has no effect on the input string.
op(ACTION(arguments)#ParseStack#Input String) indicates in which context, i.e.
how the Parse Stack and the Input String looked like, when the action took place.Op is
simply a container for all types of actions.
final(Parse Stack) indicates the final aspect of a parse, i.e. the meaning we have found
for an input string.

Semantic LexiconThe semantic lexicon comprises all the concepts and their triggering
phrase(s) that we wish our parser to process. A triggering phrase is simply a word (or
group of words) in the input string that triggers some concept. The format of a lexical
entry is: lexicon(CONCEPT, [TRIGGERING PHRASE]).

The bottom-up parserWe are now ready to present the variant of the shift-reduce parser
we are using. The algorithm of the parser is as follows:

1. Try to INTRODUCE a new concept or SHIFT a word.

2. Do a subset of the following operations{DROP, COREF, SCOPE}.
3. If there are more words in the input string, go back to Step 1. Otherwise stop.

A parsing exampleWe show a complete parsing in the case the user turn isOOV did you
write it?, where OOV is a out of vocabulary symbol produced by the speech recognizer:

INPUT-OPERATION
*NEW PARSE STACK in FOL

[OOV did you write it]-SHIFT
*[start:[OOV]]

[did you write it]-SHIFT
*[start:[OOV,did]]

[you write it]-INTRODUCE
*[∃(,system()):[you],start:[OOV,did]]

[write it]-COREF
*[∃(A,system(A)):[you],start:[OOV,did]]

[write it]-INTRODUCE
*[write(,):[write],∃(A,system(A)):[you],start:[OOV,did]]

[it]-DROP
*[∃(A,system(A),write(,)):[you],start:[OOV,did]]

[it]-COREF
*[∃(A,system(A),write(A,)):[you],start:[OOV,did]]

[]-INTRODUCE
*[∃(,nonhuman()):[it],∃(A,system(A),write(A,)):[you],start:[OOV,did]]

[]-COREF
*[∃(B,nonhuman(B)):[it],∃(A,system(A),write(A,)):[you],start:[OOV,did]]

[]-SCOPE
*[∃(A,∃(B,nonhuman(B),system(A),write(A,))):[you],start:[OOV,did]]

[]-COREF
*[∃(A,∃(B,nonhuman(B),system(A),write(A,B))):[you],start:[OOV,did]]

Discourse Representation StructureDiscourse Representation Theory [Kamp and Reyle
(1993)] provides a well formalized framework for handling discourse phenomena such as
pronoun and presupposition resolutions. Moreover, DRT means of representing meaning,
DRSs, can be translated directly into FOL formula. DRSs can be assimilated to boxes
having two regions: the top half region contains thediscourse referentsand the bottom
half theconditions.

4. Training

In training, a training parser is used to generate FOL statistics from DRS annotated train-
ing examples.

Spoken Examples in DRSTraining format is:training([phrase], DRS).
Had we trained the system on recognized output, we could have the following entry:
tr([OOV,did,you,write,it],drs([A,B],[nonhuman(B),system(A),write(A,B)]))

Training Parser While training, aTraining Parseris used. It tries any possible actions to
get to the final parse, without considering any information (such asstatistics) that could
be helpful to guide the parsing process. In training, atraining beamcan be specified. This
means that only a certain number of parses will be recorded in theFOL statisticsfor each
training example.

FOL statistics The training parser parses the examples to generate theFOL statistics.
Every step needed to go from thephraseto theDRSis recorded, as well as final states
themselves. Final states are simply the states of the parse stack themselves at the end of
the parse. Each of them (actions and final states) are assigned a frequency measure. Each
line has either one of the following format (recall thatop is a container for any action):

op(ACTION#PARSE_STACK#INPUT_STRING#FREQUENCY).
final(FINAL_STATE#FREQUENCY).

Here are two examples:

op(SHIFT(did)#[start:[OOV]]#[did,you,write,it]#0.3).
final([exists(A,exists(B,nonhuman(B),system(A),

write(A,B))):[you],start:[OOV,did]]#0.2).

These statistics are used by theStochastic Parserto compute the best parse.

5. Statistical Parsing

The actual parsing of the input phrase is done by aStochastic Parser. It uses a statistical
model to process all the information available from the training phase in order to get
the best possible parse (the one with the highest probability). This section describes the
statistical parser in some details.

The Search spaceLike in the training phase, the most obvious way to influence the parse
is to tell the parser how many parses it should try before taking a decision. We call it the
search beamparameter.

Measure of similarity between listsWhen the parser tries to choose a suitable parse, it
must compare list of words (to compareActions, Parse stacksor Input strings). A good
similarity measure between lists is essential, but because computing similarity is very
demanding on computer resources, one must find a trade-off that preserves computational
efficiency. The approach taken is based on n-grams [Cavnar and Trenkle (1994)].

Parametrizing the modelThe best parseP is found by taking the highest probabilityPi

among the possible parses (limited by the search beam) available:

P = maxiPi (2)

Each of these parsesPi have a probability that amounts to combining the probabil-
ity of the individualopor actions together (

∏
k ak, see equ. 4) and adding the probability

of the final state (ProbF , see equ. 5). These two components are weighted byPop and
Pfinal . Those weighting values must be chosen in such a way that translates the impor-
tance of the steps needed to get to a final parse compared to the final state itself. In short,
the weighting of actions taken together must be high enough to discriminate among simi-
lar final states (in terms of probability), should that case arise.
Multiplying by 100 gives a more readable value between 0 and 100.

Pi = (Pop ∗ (
∏

k

ak) + Pfinal ∗ ProbF) ∗ 100 (3)

The way eachopak is assigned a probability is by taking into account itssimilarity with
one of theopsin the statistics (Pm) as well as thefrequencyof thisop(Frequency). These
two components are also weighted byPop sim andPop occ. Default values are chosen
with respect to how one would want to consider the respective importance of similarity
over frequency.

ak = maxm(Pop sim ∗ Pm + Pop occ ∗ Frequency) (4)

Computing the probability of a final parse state is similar to computing the one for actions.
A final state probabilityProbF is the weighted sum of the most similar final state in the
statistical filePf (see 6) and the frequency of this final stateFrequency :

ProbF = maxf (Pfinal sim ∗ Pf + Pfinal occ ∗ Frequency) (5)

Pf = maxn(sim(tn ,F)) (6)

Conventional smoothing techniques are applied whenever necessary.

6. Experimental Results

We have conducted the usual cross-validation testing by dividing our 250 sentence corpus
into 10 testing samples of 25 sentences. In training, we produced at most 5 parses for
each example. Results for parsing are reported in the following table:

Average/N-Best 1-Best 2-Best 3-Best
Recall-Precision 62%-64% 78%-80% 88%-91%

The parser always produces a valid output, unless there is no keywords introducing a
concept in the input: this explains whyRecallandPrecisionare very similar. The N-Best
column is interpreted as follows: the correct output was AMONG the N results produced.
A correct output must be exactly like the one produced by the human annotator. The 62%
result for 1-Best may seem very modest, but in the context of a conversation, we believe
it is more important to focus on the more comfortable 88% 3-Best result. The reason is
that in a dialog system, the dialog manager (DM) have access to some sort of history or
context to arbitrate between the N-Best semantic interpretations delivered by the semantic
parser; in some occasions, it may therefore be preferable for the DM to get more than one
parse. We ran the experiment on a 2GHz laptop computer under Sicstus Prolog. Keeping
in mind that the system would be run for real-time conversations, we set a threshold of 20
parses or 3 seconds (whatever is reached first) for parsing to complete.

7. Conclusion

In this paper, a new probabilistic framework for semantic parsing is presented. The com-
bination of abottom-upparser and a purely statistical model makes it unique. More
precisely, the parser learns efficient ways of parsing new sentences by collecting statistics
on the context in which each parsing action takes place. It computes probabilities on the
basis of the similarities of those contexts and their frequencies. The result is a simple
and robust parser for speech. At this point, we believe that the 1-Best hypothesis recall
could be improved by a higher ratio training/lexicon size. However, testing shows excel-
lent results for the 3-best hypothesis. This system offers an approach in which linguistics
can play a decisive role. One crucial aspect of the parser, the computation of similarities
between context, relies on a good interpretation of linguistic patterns found in phrases,
and how those configurations may determine the particular meaning of a word or group
of words. This is essential to interpret, and maybeunderstand, conversational speech.

References

Cavnar, W.; Trenkle, J. 1994. N-gram-based text categorization. In:Proc. of SDAIR-94,
3rd Annual Symposium on Document Analysis and IR, Las Vegas, US. 161–175

Hermjakob, U.; Mooney, R. 1997. Learning Parse and Translation Decisions From Ex-
amples With Rich Context. Technical report: Dept. of Comp. Sciences, Univ. of Texas

Kamp, H.; Reyle, U. 1993. From Discourse to Logic. Dordrecht: Kluwer

Light, M.; Schubert, L. 1994. Knowledge representation for lexical semantics: Is standard
first order logic enough?. In:”Future of the Dictionary” workshop

Mooney, R.; Tang, L. 2000. Automated construction of database interfaces: Integrating
statistical and relational learning for semantic parsing. In:Proc. of EMNLP/VLC-2000,
Hong Kong. 133–141

Young, S. 2002. Talking to machines (statistically speaking). In:Proc. ICSLP. 9–16

MICHEL GÉNÉREUX is a Research Fellow, Information Technology Research Institute, Brighton.
He received his Dr.Phil. in Computational Linguistics at the University of Vienna, dealing with
Spoken Dialogue Systems. His current research interests concern style in Speech Generation.
E-mail: michel.genereux@itri.brighton.ac.uk

