Phenformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) activation of AMP-activated protein kinase inhibits transepithelial Na+ transport across H441 lung cells

Woollhead, A.M., Scott, J.W., Hardie, D.G. and Baines, D.L. (2005) Phenformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) activation of AMP-activated protein kinase inhibits transepithelial Na+ transport across H441 lung cells Journal of Physiology, 566 (3). pp. 781-792. ISSN 1469-7793

Full text not available from this repository.

Abstract

Active re-absorption of Na+ across the alveolar epithelium is essential to maintain lung fluid balance. Na+ entry at the luminal membrane is predominantly via the amiloride-sensitive Na+ channel (ENaC) down its electrochemical gradient. This gradient is generated and maintained by basolateral Na+ extrusion via Na+,K+-ATPase an energy-dependent process. Several kinases and factors that activate them are known to regulate these processes; however, the role of AMP-activated protein kinase (AMPK) in the lung is unknown. AMPK is an ultra-sensitive cellular energy sensor that monitors energy consumption and down-regulates ATP-consuming processes when activated. The biguanide phenformin has been shown to independently decrease ion transport processes, influence cellular metabolism and activate AMPK. The AMP mimetic drug 5-aminoimidazole-4-carboxamide-1--d-ribofuranoside (AICAR) also activates AMPK in intact cells. Western blotting revealed that both the 1 and 2 catalytic subunits of AMPK are present in Na+ transporting H441 human lung epithelial cells. Phenformin and AICAR increased AMPK activity in H441 cells in a dose-dependent fashion, stimulating the kinase maximally at 5–10 mm(P= 0.001, n= 3) and 2 mm(P < 0.005, n= 3), respectively. Both agents significantly decreased basal ion transport (measured as short circuit current) across H441 monolayers by approximately 50% compared with that of controls (P < 0.05, n= 4). Neither treatment altered the resistance of the monolayers. Phenformin and AICAR significantly reduced amiloride-sensitive transepithelial Na+ transport compared with controls (P < 0.05, n= 4). This was a result of both decreased Na+,K+-ATPase activity and amiloride-sensitive apical Na+ conductance. Transepithelial Na+ transport decreased with increasing concentrations of phenformin (0.1–10 mm) and showed a significant correlation with AMPK activity. Taken together, these results show that phenformin and AICAR suppress amiloride-sensitive Na+ transport across H441 cells via a pathway that includes activation of AMPK and inhibition of both apical Na+ entry through ENaC and basolateral Na+ extrusion via the Na+,K+-ATPase. These are the first studies to provide a cellular signalling mechanism for the action of phenformin on ion transport processes, and also the first studies showing AMPK as a regulator of Na+ absorption in the lung.

Item Type:Journal article
Subjects:C000 Biological and Biomedical Sciences
DOI (a stable link to the resource):10.1113/jphysiol.2005.088674
Faculties:Faculty of Science and Engineering > School of Pharmacy and Biomolecular Sciences
ID Code:2706
Deposited By:editor spbs
Deposited On:08 Nov 2007
Last Modified:23 Dec 2013 12:03

Repository Staff Only: item control page