Fuzzy logic and neuro-fuzzy modelling of diesel spray penetration: a comparative study

Lee, S.H., Howlett, R.J., Crua, C. and Walters, S.D. (2007) Fuzzy logic and neuro-fuzzy modelling of diesel spray penetration: a comparative study Journal of Intelligent and Fuzzy Systems, 18 (1). pp. 43-56. ISSN 1064-1246

Full text not available from this repository.

Official URL: http://iospress.metapress.com/link.asp?id=5xaj40hg...

Abstract

The aim of this study was to demonstrate the effectiveness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of diesel spray penetration length in the cylinder of a diesel internal combustion engine. The technique involved extraction of necessary representative features from a collection of raw image data. A comparative evaluation of two fuzzy-derived techniques for modelling fuel spray penetration is described. The first model was implemented using a conventional fuzzy-based paradigm, where human expertise and operator knowledge were used to select the parameters for the system. The second model used an adaptive neuro-fuzzy inference system (ANFIS), where automatic adjustment of the system parameters was effected by a neural network based on prior knowledge. Two engine operating parameters were used as inputs to the model; namely in-cylinder pressure and air density. Spray penetration length was modelled on the basis of these two inputs. The models derived using the two techniques were validated using test data that had not been used during training. The ANFIS model was shown to achieve an improved accuracy compared to a pure fuzzy model, based on conveniently selected parameters.

Item Type:Journal article
Subjects:G000 Computing and Mathematical Sciences > G600 Software Engineering
H000 Engineering > H300 Mechanical Engineering > H330 Automotive Engineering
G000 Computing and Mathematical Sciences > G700 Artificial Intelligence
Faculties:Faculty of Science and Engineering > School of Computing, Engineering and Mathematics > Engineering and Product Design Research > Automotive Engineering
ID Code:2187
Deposited By:Dr Cyril Crua
Deposited On:21 Jun 2007
Last Modified:18 Jun 2010 12:32

Repository Staff Only: item control page