Muscle moment arm analyses applied to vertebrate paleontology: a case study using

Stegosaurus stenops Marsh, 1887

CHARLOTTE A. BRASSEY,¹,‡,* SUSANNAH C. R. MAIDMENT,²,³ and PAUL M. BARRETT⁴

‡Current Address: School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, United Kingdom, c.brassey@mmu.ac.uk;
¹School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom;
²School of Environment and Technology, University of Brighton, Lewes Road, Brighton, BN2 4GJ, United Kingdom, s.maidment@brighton.ac.uk;
³Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London SW7 2AZ, United Kingdom;
⁴Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5DB, United Kingdom, p.barrett@nhm.ac.uk

*Corresponding author

RH: BRASSEY ET AL.—MUSCLE MOMENT ARMS OF STEGOSAURUS
ABSTRACT—The moment arm of a muscle defines its leverage around a given joint. In a clinical setting, the quantification of muscle moment arms is an important means of establishing the ‘healthy’ functioning of a muscle and in identifying and treating musculoskeletal abnormalities. Elsewhere in modern animal taxa, moment arm studies aim to illuminate adaptions of the musculoskeletal system towards particular locomotor or feeding behaviors. In the absence of kinematic data, paleontologists have likewise relied upon estimated muscle moment arms as a means of reconstructing musculoskeletal function and biomechanical performance in fossil species. With the application of ‘virtual paleontological’ techniques, it is possible to generate increasingly detailed musculoskeletal models of extinct taxa. However, the steps taken to derive such models of complex systems are seldom reported in detail. Here we present a case study for calculating three-dimensional muscle moment arms using *Stegosaurus stenops* Marsh, 1887 to highlight both the potential and the limitations of this approach in vertebrate paleontology. We find the technique to be mostly insensitive to choices in muscle modeling parameters (particularly relative to other sources of uncertainty in paleontological studies), although exceptions do exist. Of more concern is the current lack of consensus on what functional signals, if any, are contained within moment arm data derived from extant species. Until a correlation between muscle moment arm and function can be broadly identified across a range of modern taxa, the interpretation of moment arms calculated for extinct taxa should be approached with caution.
INTRODUCTION

Biomechanics is the application of mechanical principles to biological systems. An understanding of how mechanical principles act to facilitate or constrain biological form is essential for our understanding of adaptation and the causal link between phenotype and evolutionary success (Alexander, 2003; Taylor and Thomas, 2014). At the level of the individual, the fundamental processes of locomotion, feeding, breathing, and reproduction are strongly dictated by the geometric arrangement of muscle and bone. More broadly, studies of predation, competitive exclusion, adaptive radiation, and convergent evolution may all be considered in the light of the musculoskeletal system.

Here, we focus on one particular aspect of functional anatomy, muscle moment arms, or the leverage of muscles around a joint. As a geometric property, moment arms can be straightforward to calculate, and have therefore been widely applied to fossil taxa to elucidate evolutionary trends in biomechanical performance within and between extinct lineages, and higher-level biomechanical parameters such as active muscle volume and estimated energy expenditure. With the recent growth in ‘virtual paleontology’ (Sutton et al., 2014), increasingly advanced modeling techniques are now employed to estimate muscle moment arms. Using a new 3D digital reconstruction of Stegosaurus stenops (Brassey et al., 2015) as a worked example, we describe in detail the steps taken when calculating muscle moment arms in fossil taxa. In particular, we highlight the relative sensitivity/insensitivity of this approach to modeling parameters. Additionally, we discuss what functional signals, if any, are present in the muscle moment arms of extant taxa, and the degree to which these signals may be discernable in fossil taxa.
Muscle Moment Arms in Extant Taxa

In biomechanics, musculoskeletal function is strongly dictated by the geometry of the muscle-tendon units of the body, and the most basic descriptor of muscle geometry is muscle moment arm. Torque (or moment) is the tendency for an applied force to rotate an object around an axis, and is calculated as the cross product of force and the lever-arm (herein ‘moment arm’) of the force system (Gregory, 2006). The moment arm is defined as the perpendicular distance from said axis to the line of action of the force. In the context of biomechanics, a muscle moment arm can be thought of as the leverage of a given muscle-tendon unit around a joint and as a means of transforming muscle force into joint rotation. As such, moment arms are crucial for understanding how muscles produce limb movement. In this simplified lever system, larger moment arms produce larger joint moments as:

\[M_{\text{joint}} = MA \times F_{\text{mus}} \]

(1)

where \(M_{\text{joint}} \) is the joint moment, \(MA \) is the moment arm, and \(F_{\text{mus}} \) is the muscle force. However, larger moment arms are also associated with a decrease in muscle contraction velocity as:

\[\omega = \tan^{-1}(\Delta L_{\text{mus}}/MA)/t \]

(2)

where \(\omega \) is the angular velocity of the joint, \(\Delta L_{\text{mus}} \) is the change in the length of the muscle, and \(t \) is time (Channon et al., 2010). Muscle moment arms may therefore
distinguish between limbs optimized for high rotational velocity versus those
optimized for high torque (Stern, 1974; but see below for confounding factors).
Within human clinical and sports sciences, the quantification of ‘healthy’
muscle moment arms is essential for the treatment of movement abnormalities and in
the planning of orthopedic surgeries (Arnold et al., 2000). Therefore considerable
effort has been invested in developing techniques for reliably estimating muscle
moment arms. For cadaveric material, muscle moment arm can be calculated
according to the classic ‘geometric’ definition (the shortest perpendicular distance
from the joint center of rotation to the muscle-tendon unit’s line of action) using an
idealized origin-insertion model, assuming each muscle is represented as a straight
line between origin and insertion (Karlsson and Peterson, 1992; Hughes et al., 1998;
see Fig. 1).
However, moment arm often varies with joint angle (An et al., 1984), and
hence muscle dynamics vary throughout the gait cycle (Williams et al., 2008).
Consequently, a more informative metric is the relationship between joint angle and
instantaneous muscle moment arm. The tendon-travel method (Spoor and van
Leeuwen, 1992; Otis et al., 1994) plots joint angle against tendon displacement and
fits linear or second/third order polynomial models to the relationship. The equations
can then be differentiated to give either a constant value for moment arm (as in the
case of linear regression) or the relationship between joint angle and moment arm (in
the case of polynomial equations). The tendon-travel method benefits from
minimizing the uncertainty associated with locating the joint center and has been
applied extensively to both human and non-human modern taxa (Favre et al., 2008;
Channon et al., 2010; Crook et al., 2010; Astley and Roberts, 2012). However,
concerns have been raised regarding the application of tendon-travel to the calculation
of moment arms. Sustaita et al. (2015) found considerable disagreement between moment arms calculated using the ‘geometric’ definition and those calculated via tendon-travel, most likely due to dynamic changes in the travel path of tendons during phalangeal joint excursion causing increased tendon travel without a concomitant increase in a given in-lever. Additionally, Hutchinson et al. (2014) highlighted the issue of kinematic ‘cross-talk’, in which the joint coordinate system is misaligned with the axis about which movement is assumed to occur (for example, the flexion-extension axis may deviate from the mediolateral anatomical direction: Piazza and Cavanagh, 2000). Thus, physical manipulation of the joint within one plane of movement will inevitably produce some motion about the others, introducing additional error into tendon-travel estimates.

Traditionally applied, both methods for estimating moment arms assume the joint to be operating solely within the plane of movement under investigation (i.e., ignoring the ‘cross-talk’ described above), and involve labor-intensive dissection. Increasingly, however, 3D medical imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound, are being employed to carry out in-vivo subject-specific quantification of muscle moment arms (Sammarco et al., 1973; Kumar, 1988; Juul-Kristensen et al., 2000; Maganaris, 2004), either for the purpose of surgical planning and clinical decision-making or for ex-vivo quantification based on cadaveric material. These approaches avoid invasive surgeries and allow joint movement to be quantified in 3D. However, calculating muscle moment arms for the wide variety of limb postures assumed during habitual locomotion requires extensive imaging of the patient. Therefore a combination of patient-specific 3D imaging and generic computer-based musculoskeletal modeling
has become common practice in clinical biomechanics (Arnold et al., 2000 and references therein).

Muscle Moment Arms Applied to the Fossil Record

Within the disciplines of paleontology and physical anthropology, bone morphology is often the only source of information upon which to base reconstructions of the behavior and phylogenetic relationships of extinct species. Other information on bone material properties (elastic moduli, density) and muscle architecture (fiber length, pennation angle) are either lost entirely or preserved only under exceptional conditions (McNamara et al., 2010). When required for biomechanical modeling approaches, such as finite element analysis (FEA) or multibody dynamic analysis (MBDA), these properties must therefore be estimated with reference to the extant phylogenetic bracket (EPB: Witmer, 1995a) or explicitly excluded from the analysis.

Although soft tissues are rarely preserved in the fossil record, musculoskeletal reconstructions of extinct taxa are frequently attempted (e.g., fish: Anderson and Westneat, 2009; early tetrapods: Neenan et al., 2014; amphibians: Witzmann and Schoch, 2013; dinosaurs: Maidment and Barrett, 2011, 2012; pterosaurs: Costa et al., 2013; mammals: Gill et al., 2014; birds: Tambussi et al., 2012; hominins: Nagano et al., 2005; D’Anastasio et al., 2013). Furthermore, the qualitative discussion of muscle moment arms is a long-established practice in vertebrate paleontology (Morton, 1924; Simpson and Elftman, 1928), and the calculation of muscle moment arms has been applied to the fossil record to address biomechanical questions at several levels:
1. The functioning of individual muscle-tendon units. For example, determining the function of a particular muscle (i.e., flexor vs. extensor) around a given joint in an individual (e.g., Bates et al., 2012a).

2. The functioning of musculoskeletal groups. For example, using the sum of muscle moment arms around a joint to infer limb pose in an individual (e.g., Hutchinson et al., 2005).

3. The functioning of muscle-tendon units, or musculoskeletal groups, across multiple individuals. For example, using muscle moment arms to infer changes in locomotor ability, feeding or other behaviors within a lineage (e.g., Bargo, 2001).

In the absence of soft tissues, muscle moment arms may be calculated from dry skeletal/fossil remains on the basis of estimated muscle attachment sites, simple 2D trigonometry, and/or more complex 3D computer models. Early studies tended to follow an idealized 2D origin-insertion method (e.g., DeMar and Barghusen, 1972; McHenry, 1975; Emerson and Radinsky, 1980) in which each muscle is simplified to one line of action, and a single value for a moment arm is calculated geometrically on the basis of skeletal landmarks identifying joint centers and muscle insertions (see Fig. 1). However, following the development of computer-based musculoskeletal modeling within the clinical sciences, paleontologists have adopted this technique to generate detailed 3D models of fossil myology including complex joints, muscle geometry, and travel paths for the purpose of moment arm estimation (e.g., Hutchinson et al., 2005; Chapman et al., 2010; Bates and Schachner, 2011; Bates et al., 2012a, b; Maidment et al., 2014a; Costa et al., 2013). Both approaches have merit, and both are still commonly applied to calculate the muscle moment arms of extinct taxa.
Van Der Helm and Veenbaas (1991) identified two phases in assessing the mechanical behavior of a system: 1) deriving an adequate model of the system and; 2) using the model to calculate forces, stresses, and motions. In the case of the musculoskeletal system, once a model has been created, the calculation of muscle moment arms, muscle force, joint torque, etc., is relatively straightforward and has the potential to generate a vast quantity of data very quickly. In some cases, however, only the results of the analyses are discussed in detail, whereas the steps taken to derive a simplified model of a fossil from such a complex system may be poorly described or absent entirely.

Elsewhere, considered reviews of palaeontological FEA have highlighted the sensitivity of model results to input parameters and cautioned against their over-interpretation (Rayfield, 2007; Bright, 2014), reflecting a growing concern within the field over the exponential growth in the number of fossil biomechanics studies with comparatively little validation on extant taxa (Anderson et al., 2011; Brassey, in press). Here we contribute to this discussion by reviewing the procedure for calculating muscle moment arms using 3D musculoskeletal models of fossil species, highlighting the steps that involve user subjectivity and potential sources of uncertainty in model parameters. Whilst the growth in graphics-based computational models has made it possible to create increasingly complex and arguably more ‘realistic’ biomechanical models of fossil taxa, this has been at a cost. Much of the literature surrounding musculoskeletal models of fossil species is an impenetrable ‘black-box’ to non-specialists (Anderson et al., 2011) as methodologies are often sparse in detail or relegated to supplementary materials (although see Domalain et al., 2016; Lautenschlager, 2016). Furthermore, the sensitivity of model results to input
parameters are not always fully explored (although see Hutchinson et al. [2005] and Bates et al. [2012a] for sensitivity analyses on fossil muscle reconstructions).

Here we present a workflow for the generation of a musculoskeletal model of a specific fossil individual and the subsequent calculation of muscle moment arms. We aim to improve transparency with regard to model creation, whilst emphasizing the potential utility of this approach and drawing attention to its limitations. Previous studies have addressed these issues in the context of clinical human anatomy (Hicks et al., 2014 and references therein), but we highlight additional issues that are solely the concern of those working on fossil material. Furthermore, we consider which functional signals (if any) are discernable within the muscle moment arm data of extant taxa, and therefore what we might reasonably expect to find from an equivalent paleontological study.

The capacity of a given muscle to generate torque around a joint is a function of both its force-generating capability (as defined by physiological cross-sectional area) and its moment arm. Multibody dynamic analyses employing forward- or inverse-dynamic simulations of locomotion (Sellers and Manning, 2007; Sellers et al., 2009, 2013), biting (Bates and Falkingham, 2012; Lautenschlager et al., 2016) and head and neck movements (Snively et al., 2013) in fossil species are also reliant upon estimates of both muscle architecture and muscle moment arms. The following discussion is therefore highly relevant to those creating musculoskeletal models for the purpose of MBDA and FEA on extinct species.

MODEL CONSTRUCTION
The specimen used as an example herein is a sub-adult individual of the ornithischian dinosaur *Stegosaurus stenops* Marsh, 1887 (NHMUK [Natural History Museum, London, U.K.] PV R36730), collected from the Upper Jurassic Morrison Formation of Wyoming, U.S.A. This specimen is the most complete *Stegosaurus* found to date, with over 80% of the body represented (Brassey et al., 2015; Maidment et al., 2015). The specimen was digitized as disarticulated elements using photogrammetric protocols described elsewhere (Falkingham, 2012; Mallison and Wings, 2014) and the freely available photogrammetry software ‘VisualSFM’ (http://ccwu.me/vsfm) and ‘Meshlab’ (http://meshlab.sourceforge.net) and the reconstructed articulated skeleton was posed in 3DsMax (http://www.autodesk.com/3dsmax) (see Fig. 2). Details regarding the extent of missing/repaired elements and degree of taphonomic damage are reported elsewhere (Maidment et al., 2015). Likewise, the procedure for rearticulating the digital model is documented in Brassey et al. (2015).

Muscle moment arm analysis was carried out in ‘Gaitsym’ (http://www.animalsimulation.org; Sellers and Manning, 2007). Whilst we take a 3D graphics-based computational approach to calculating moment arms of the appendicular skeleton, much of our discussion is also applicable to the classic 2D origin-insertion method frequently employed by paleontologists and to musculoskeletal reconstructions of the skull.

The procedure for model creation is described in detail below. Briefly, muscles were reconstructed on the basis of stegosaurian limb myology, as reconstructed by Maidment and Barrett (2012), including 13 muscles in the forelimb and 19 in the hind limb. In addition, pairs of antagonistic puppet-string ‘driver’ muscles were attached for the purpose of driving the limbs from maximal theoretical
flexion to maximum theoretical extension (see Fig. 2 and ‘Joint Ranges of Motion’, below, for more detail). Alternatively, pre-existing muscles within the model can be used for this purpose, assuming the geometry of the muscle is such that the maximum flexion/extension can be achieved when the muscle is activated. Whichever mechanism is used to drive the limb through flexion-extension (either by the puppet-string muscles, or by firing off the pre-existing muscles intrinsic to the model), joint limits are predetermined (see below) and will remain the same, as will the resulting moment arms.

Moment arms were calculated according to the classic geometric definition (shortest perpendicular distance from joint center to muscle line of action) as opposed to the tendon travel method, although both will result in the same answer using the 3D modeling approach presented herein. As the model comprised several bi-articular muscles (muscles that travel across two joints), joints in the limb other than the one under investigation were locked in all planes of movement during the analysis, as is common practice in paleontology and modern cadaveric experiments (Channon et al., 2010). Pairs of driver muscles were activated in sequence (each activation lasting 0.5 seconds) to drive the limb segment through its full range of motion from its original neutral posture whilst instantaneous moment arms were calculated for every muscle at a default interval of 0.0001 seconds. Joint angle and moment arms were exported to ‘R’ (R Core Team, 2016) and plotted using a cubic smoothing spline (smooth.spline function within the ‘stats’ package).

Articulation of the Skeleton

Every mechanical model begins with at least two rigid bodies (in this case, bones) connected by a kinematic constraint (in this case, a joint). When generating a
musculoskeletal model of an extant individual, skeletal geometry is often derived from a CT or MRI scan of the intact body and the articulation of the skeleton is therefore relatively well constrained. In the case of fossil taxa, however, the skeleton may be digitized as disarticulated elements (as in the case of Stegosaurus presented here) or as a museum-mounted specimen (Maidment et al., 2014). In either scenario, the absence of associated soft tissues requires subjective decisions to be made regarding the rearticulation of the skeleton.

Although the preservation of calcified cartilage in fossil long bones has been widely reported (Holliday et al., 2010 and references therein), the non-ossified epiphyseal joint cartilage (chondroepiphysis) that would have capped the ends of bones is rarely fossilized (Chinsamy-Turan, 2005). In extant archosaurs, removal of the chondroepiphysis accounts for a 5–9% decrease in long bone length in the limbs of Alligator mississippiensis and 0–10% in a range of modern birds (Holliday et al., 2010). Previous studies of fossil muscle moment arms have attempted to correct for this missing cartilage. In a study on the hind limbs of Tyrannosaurus rex, Hutchinson et al. (2005) added 7.5% to the length of the femur, 5% to that the tibia, and 10% to metatarsus length on the basis of an undescribed set of cartilage measurements from extant taxa. In other studies limb bones are clearly spaced apart, yet no specific reference is made to the size of spacing, nor how this value was calculated (e.g., Bates et al., 2012a, b).

Failure to account for missing articular cartilage has the effect of shortening the effective segment length and bringing muscle origin and insertion points closer together. As an example, Figure 3 illustrates the effect of incorporating articular cartilage on moment arm values for the M. iliofibularis (IFB) measured around the knee during knee flexion. IFB was modelled as travelling in a straight path from
origin to insertion without passing through via points or around cylinders (see Muscle Paths, below). For a discussion of the process of estimating joint center locations, see Joint Centers, below. The effect of missing articular cartilage on calculated moment arms varies with joint angle (Fig. 3) with the discrepancy between models with and without cartilage increasing with knee flexion. When accounting for an additional (worst-case scenario) 10% of long bone length as cartilage (Fig. 3C), the maximum value calculated for IFB moment arm is 26% greater than when cartilage is ignored. However, if the joint center is shifted distally to maintain an equal distance between muscle insertion and center of rotation when adding cartilage (Fig. 3D), this discrepancy is considerably reduced. In modern taxa, the extent to which joint center locations differ between those calculated in-vivo, versus those based on dry articular surfaces missing cartilage, is unknown (see later section ‘Joint Centers’).

Given that high variability has been documented in long bone cartilage thickness among extant birds (within Galliformes, cartilage accounts for 10% of femoral length in *Gallus gallus* and 1% in *Coturnix japonica*: Holliday et al., 2010) it is reasonable to predict that such disparity might also have characterized extinct clades. When generating muscle moment arm data across a comparative sample of fossil taxa, for example, the dinosaurian clades Ornithischia (Maidment et al., 2014a) or Allosauroidea (Bates et al., 2012b), it is prudent to consider that interspecific variability in cartilage thickness will overlie any hypothesized functional signal in muscle moment arms, and may affect the interpretation of the dataset. In extant mammals, a significant negative allometric relationship exists between body mass and femoral condyle cartilage thickness (Malda et al., 2013). A similar pattern has also been identified in ontogenetic samples of *Alligator* and *Numida*, in which smaller individuals possess a relatively greater thickness of chondroepiphysis to total bone
length (Bonnan et al., 2010). Should this relationship prove consistent across modern
birds or reptiles, it would prove useful in constraining hind limb joint spacing in
comparative samples of fossil archosaur taxa.

Likewise, the loss of intervertebral fibrocartilagenous disks or synovial
capsules from between adjacent vertebrae in extinct taxa has the effect of shortening
the length of the reconstructed vertebral column. This effect has previously been
discussed in the context of estimated neck flexibility and range of motion (Mallison,
2010a; Cobley et al., 2013; Taylor and Wedel, 2013) and as a potential source of
uncertainty in volumetric mass estimates (Brassey et al., 2015). Additionally, for
muscles originating from the tail (e.g., M. caudofemoralis longus in archosaurs) or
thorax (e.g., M. latissimus dorsi and M. trapezius in tetrapods), the incorporation of
additional spacing to account for intervertebral soft tissues will also impact calculated
muscle moment arms in a similar manner to epiphyseal cartilage, as discussed above.

Furthermore, placement of the scapula relative to the ribcage has a knock-on effect on
the location of the shoulder joint relative to the thorax. Whilst mounted skeletons are
often characterized by the scapula immediately overlying the ribs, the volume of soft
tissue separating the skeletal elements has not been quantified in extant taxa.

In addition to joint spacing, the joint morphology of extinct taxa can be
altered, both due to the removal of cartilage and other soft tissues though the process
of fossilization (Bonnan et al., 2010), and due to subsequent taphonomic deformation
and weathering. This can increase uncertainty with regards to the orientation and
positioning of skeletal elements, and further hamper efforts during rearticulation. In
the case of Stegosaurus (NHMUK PV R36730), for example, the degree of
mediolateral flaring of the pubis and ischium is open to interpretation.
In ornithischian dinosaurs, the prepubis is an anterior extension of the pubis arising from its proximal margin and extending anterior to the acetabulum. This process acts as an origin for the M. ambiens (AMB), which subsequently inserts onto the cnemial crest of the tibia (Maidment and Barrett, 2011). When reconstructing the *Stegosaurus* model, the pubis and ischium were rearticulated with the ventral surface of the ilium to form the borders of an open acetabulum using the orientations of their articular surfaces as a guide. However, the angles at which the paired pubes and ischia extend with respect to the midline are uncertain. Whilst the paired pubes must be in contact distally, the contact between the iliac articulation of the pubis and the pubic peduncle of the ilium is less well constrained by osteology. Figure 4 illustrates the effect of varying the angle of the pubis relative to the midline on AMB flexion-extension (FlexExt), abduction-adduction (AbdAdd), and long-axis rotation (LAR) moment arms calculated at the hip during hip flexion-extension. The pubis was modeled in two orientations: a) with the long axes of the pubes aligned parallel to the iliac blades (Fig. 4A), which are themselves extremely flared in the mediolateral direction, with their distal ends meeting at a ventral midline symphysis; and b) with the long axes of the pubes rotated medially from this initial position, with distal ends meeting in a symphysis but with less extreme flaring (Fig. 4B).

Predictably, rotating the pubis medially does not impact upon the flexion-extension moment arm of AMB, and the functioning of the muscle remains consistent as a flexor. Likewise, AbdAdd moment arms for both model configurations suggest AMB functions as a hip abductor as the origin as path of the muscle remains lateral to the hip joint throughout the range of motion. When the pubis is rotated medially, average AbdAdd moment arm does decrease from 0.23 to 0.14 m, however, due to the muscle path shifting closer to the joint center. Interestingly LAR moment arms in the
flared pubis model suggest a lateral rotation function at values of hip flexion between 35–60° (Fig. 4A), whereas AMB acts as a medial rotator throughout most of the range of motion in the medial pubis model, switching to lateral rotation only at very high values of flexion (>50°) and representing a small change in predicted muscle function between the two models.

Uncertainty with regards to skeletal articulation therefore has the potential to affect not only the magnitude of calculated muscle moment arms, but also the inferred function of the muscle unit itself. This highlights the importance of having a strong grounding in both the osteology and myology of the study taxa and in conducting sensitivity analyses, not only to quantify uncertainty in muscle attachment sites, as has previously been the case (Hutchinson et al., 2005; Bates et al., 2012a), but also to investigate the effects of uncertainty in skeletal articulation.

Finally, the neutral stance in which the model is posed must be clearly stated in order to facilitate comparisons between species and across studies. For some muscles, moment arm values calculated with respect to a given joint axis are highly sensitive to the joint angle about one or both of the other axes (O’Neill et al., 2013), as highlighted by the issue of ‘cross talk’ when estimating extant moment arms via the tendon-travel method (Hutchinson et al., 2014; see Introduction). For the estimation of hind limb muscle moment arms in dinosaurs, a standard neutral hip posture of 0° extension, 10° abduction, and 0° long axis rotation has been broadly agreed upon (Hutchinson et al., 2005; Bates and Schachner, 2011; Bates et al., 2012a; Maidment et al., 2014a), a convention that we follow herein. Comparatively little work has been carried out on the moment arms of forelimb muscles in extinct taxa using 3D musculoskeletal models (although geometric 'dry-bone' analyses do exist: Fujiwara and Hutchinson, 2012; Martín-Serra et al., 2014). We therefore assume a neutral
shoulder posture of 30° retraction, 10° abduction, and 0° long axis rotation, following this earlier work.

Undoubtedly, the selection of a ‘neutral posture’ does introduce a degree of uncertainty and places unnecessary emphasis on reconstructing the standing posture of individual taxa. When undertaking a comparison between several species of differing bone morphology, the degree of osteological rotation around the long axis of the bone, or extent of valgus, may vary. In such an instance, identifying an ‘equivalent’ starting point for a moment arm analysis may prove problematic. An alternative way forward may be to follow the protocol used in biplanar X-ray imaging studies (M. F. Bonnan, pers. comm., January 2017), in which the bones may be posed in a flat plane or a folded position (Bonnan et al., 2016). Such reference postures might be anatomically unfeasible, but are more easily replicated across a wide range of taxa of diverse morphology and would provide a more consistent starting point for comparative muscle moment arm studies.

Joint Ranges of Motion

Muscle moment arm can change as a function of joint angle (An et al., 1984) and it is common practice to report moment arm values calculated as a limb is moved through its full range of motion (ROM) in a particular plane. In Figure 4, for example, the hip joint is moved from full flexion (-60°) to full extension (60°), assuming a neutral posture of 0° in which the femur is held perpendicular to the ground in the sagittal plane. It is important to emphasize that the selection of the joint ROM is entirely under the control of the user. That is, whilst it is possible to calculate a value for muscle moment arm for absolutely any joint angle (including angles at which the
limb would be entirely disarticulated), it is at the discretion of the user to constrain the
ROM to within probable biomechanical limits.

For example, Maidment et al. (2014a) compared hind limb muscle moment arms calculated for a diverse sample of ornithischian dinosaurs across a hip flexion-extension ROM of -60° to 60°. Whilst this approach of comparing species across a fixed ROM simplifies comparisons, it does raise a teleological issue. The biomechanical feasibility of each individual achieving such a ROM in-vivo is not taken into account, and on the basis of osteological and myological reconstructions it is considered highly unlikely that some species (including this specimen of Stegosaurus) could have attained the lower-most values for hip flexion (see Fig. 5).

The value of plotting muscle moment arms calculated at unrealistic joint angles is therefore questionable.

An alternative approach is to investigate feasible joint ROM on a specimen-by-specimen basis, either through physical rearticulation of the skeleton or casts thereof (Johnson and Ostrom, 1995; Senter and Robins, 2005; Taylor and Senter, 2010) or through manipulation of 3D digital models (Mallison, 2010a, b; Pierce et al., 2012). However previous studies have found ROM at the joints to be strongly affected by the presence/absence of soft tissues and cartilage around limb (Hutson and Hutson, 2012) and intervertebral joints (Taylor and Wedel, 2013; Cobley et al., 2013), and accounting for the removal of extrinsic (integument, muscles, capsular ligaments) and intrinsic (cartilage) soft tissues from the fossil skeleton is not straightforward. Within the shoulder and elbow of Alligator, for example, the removal of extrinsic soft tissues acts to increase ROM, whilst subsequent removal of articular cartilage acts to decrease ROM, resulting in a counter-intuitive net decrease in ROM from an intact to entirely skeletonized limb (Hutson and Hutson, 2012, 2013). In contrast, within the
neck of the ostrich, removal of both extrinsic and intrinsic soft tissues acts to increase ROM (Cobley et al., 2013). A growing body of work is quantifying joint ROM both in non-human mammals (Ren et al., 2008; Bonnan et al., 2016) and within the context of the dinosaur EPB, although the total number of studies remains limited. In light of this paucity of modern data, the conservative approach of Maidment et al. (2014a), where all taxa are modelled with the same broad ROM, may be preferable. However, the requirement for anatomically realistic ROM data remains an issue for MBDA of locomotion, feeding, etc.

Furthermore, assessments of possible joint ROM tend to focus solely on bone-to-bone contact within the fossil limb, such as joint impingement and dislocation. For example, moment arm papers dealing with hind limb muscles in extinct taxa often model the bones of the pelvis and hind limb only (Hutchinson et al., 2005; Bates et al., 2012a, b; Maidment et al., 2014a, b). Potential collisions with the head, arms, and torso are ignored. Yet, as illustrated in Figure 5, the positioning of the ribcage can act as a further constraint on joint ROM, as the extent of hip flexion is limited by the potential for the femur to collide with the posterior dorsal ribs (assuming 10° abduction and zero long axis rotation). However, this approach is considerably more time consuming (as digital models of the thoracic vertebrae and dorsal ribs are also required) and places further onus upon accurate rearticulation of the trunk, which is itself subject to various assumptions (e.g., the potential range of movement between the rib and its vertebral articulations, the exact geometry of the articulations, and the effects on these of missing soft tissues). In our Stegosaurus model, for example, the characteristic triangular ribcage present in the skeletal mounts of the American Museum of Natural History and Senckenberg Museum stegosaurs is reconstructed by sweeping the distal ends of the ribs anteriorly (Fig. 5). Yet ribs are frequently
damaged, taphonomically deformed (e.g., Maidment et al., 2015), or absent entirely, and the extent to which this represents an accurate skeletal rearticulation is unclear.

Whilst the incorporation of additional body parts, such as the tail or torso, into a musculoskeletal model may further constrain limb ROM, this must be balanced against a concurrent increase in uncertainty regarding model articulation and also the concomitant reduction in analytical sample size, which becomes limited perforce to those specimens that are relatively complete. On the rare occasions when trackways can be assigned confidently to fossil taxa, their gauge, stride length, and other track features may also inform potential posture and limb range of motion (e.g., Alexander, 1989; Henderson, 2006; Hatala et al., 2016; but see Falkingham, 2014).

Muscle Definitions

Muscle Anatomy—Following the articulation of rigid bodies, the next stage in building our biomechanical model involves reconstruction of the overlying musculature. As highlighted above, it is possible to output moment arm values for an array of nonsensical musculoskeletal arrangements, but we emphasize and advocate the importance of grounding fossil biomechanical studies within a comprehensive understanding of the anatomy of the study taxa. In the case of fossil myologies, accurate reconstructions require the assimilation of two sources of information (Fox, 1964): 1) evidence of muscle attachment sites on bone surfaces, including scarring, ridges, trochanters, and fossae; and 2) phylogenetic inference of muscle presence/absence based on the anatomy of closely related extant taxa (Witmer, 1995a).

The use of osteological correlates in soft tissue reconstruction is well established in vertebrate paleontology. Muscle scarring can indicate the location and,
to a limited extent, the size of a muscle attachment, and has been applied to broad
interspecific samples of taxa to trace the evolution of cranial (Witmer, 1995b; Holliday, 2009) and postcranial musculature (Hutchinson, 2001a, b; Maidment and Barrett, 2012). Muscles inserting via tendons or aponeuroses tend to leave more
distinct scars than those inserting via fleshy attachments (Bryant and Seymour, 1990),
yet those without well-developed scars may still be reconstructed with a reasonable
level of confidence (Hutchinson and Carrano, 2002) particularly when placed within a
phylogenetic context (see below). The correspondence between the location of
attaching muscles and resulting scars has been validated in extant taxa, in both the
skull (Hieronymus, 2006) and postcrania (Hutchinson, 2002; Meers, 2003), although
recent research has cautioned against the interpretation of scar morphology as
representative of original muscle size and/or action (Zumwalt, 2006).

Application of the EPB approach can further constrain soft tissue inferences
(Bryant and Russell, 1992; Witmer, 1995a). At its most straightforward, the EPB
places fossil taxa within the phylogenetic context of their closest related extant taxa,
with any condition present in both extant taxa being inferred as present in their last
common ancestor and in all of its descendants. For the purpose of estimating moment
arms, the EPB also has the advantage of permitting the reconstruction of muscles that
lack distinct attachment scarring. Furthermore, application of the EPB to soft tissue
restoration involves a ‘hierarchy of inferences’ and reconstructions are assigned to
levels I, II, or III depending upon the degree of speculation involved (Witmer, 1995a).
This categorization therefore allows the degree of uncertainty in reconstructed
myology to be recorded and communicated. Depending on the taxa of interest,
however, the EPB can be relatively broad and encompass modern taxa that may be
too functionally divergent from the fossil species to provide a basis for useful
comparisons (for example, extant amphibious crocodiles form part of the EPB for extinct flying pterosaurs). This highlights the importance of grounding fossil muscle reconstructions in a detailed understanding of the complexity and variability that characterizes modern taxa, and the value of traditional anatomical descriptions as a necessary precursor to further functional analyses.

To Clump or To Split?—Every biomechanical model represents a trade-off between realism, precision, and generality, and in the case of musculoskeletal models, this trade-off is particularly evident in myological reconstructions. The detail required of a musculoskeletal model is a function of the question under investigation. In some instances, all muscles acting around a particular joint are reconstructed in order that the sum total moment arm may be estimated and limb posture inferred (Hutchinson et al., 2005; Payne et al., 2006; Maidment et al., 2014a). In other instances, when the question under consideration seeks to address an aspect of biomechanical performance across a large comparative sample, only ‘major muscles’ may be reconstructed. Biomechanical models of the masticatory system of fossil mammals, for example, often include only the major jaw adductors, the M. temporalis and M. masseter, in moment arm calculations (Iuliis et al., 2001; Bargo, 2001; Vizcaíno and Iuliis, 2003; Cassini and Vizcaíno, 2012). In such instances, the decision regarding which muscles to include is often made on the basis of reconstructed muscle volume (i.e., smaller muscles are more likely to be excluded).

Kappelman (1988) took the approach of grouping a suite of muscles together as a functional unit on the basis of their shared travel path around a joint. When estimating the moment arm of extensor muscles crossing the knee in bovids, for example, Kappelman (1988) considered all members of the Mm. quadriceps femoralis group collectively as having a shared moment arm, as they all converge on the
patellar tendon and pass over the surface of the patella at an equal distance from the joint center. A similar approach has also been taken when modelling the Mm. quadriceps femoralis group around the human knee (Herzog and Read, 1993). Likewise, when joint surfaces are modelled as cylinders in multibody dynamic packages, such as Gaitsym and OpenSim (http://opensim.stanford.edu/: Delp et al., 2007), the minimum value for the moment arms of all muscles passing around the joint will be constrained as the radius of the cylinder and hence will be equal (see Geometric Shapes, below). This incorporation of isolated muscles into functional groups is particularly important when musculoskeletal models are to be used as the basis for forward dynamic modelling of movement. In this scenario, the addition of each extra muscle increases the dimensionality of the optimal control search space and causes a huge increase in terms of the cost of the simulation (Sellers et al., 2013), and recent fossil gait simulation studies have therefore restricted themselves to modeling generic ‘knee flexors’ and ‘hip extensors’, for example (Sellers et al., 2009).

In extant taxa, however, the separate heads of a single muscle have occasionally been found to possess very different moment arms around the same joint (e.g., equine M. biceps femoris and M. gastrocnemius: Crook et al., 2010). Different subunits of a single muscle may therefore be recruited for a different function during activation (Ackland et al., 2008). The corollary of grouping muscles by function, therefore, is that it may be necessary to model a single muscle as two separate functional units, particularly when osteological evidence suggests the presence of two distinct heads. For example, Bates et al. (2012a) modeled two aspects of the M. iliopsoas (cranial and caudal), corresponding to the M. iliopsoas and M. iliopsoas externus, respectively, in extant birds. Even if both heads are
found to have similar moment arms, modelling them as separate muscle-tendon units allows for potential functional differentiation in future forward dynamic analyses.

Ultimately, the decision to group or to split muscles on the basis of function reflects a compromise between modelling the intricacy we know to characterize modern musculoskeletal systems, and the computing time and degree of uncertainty we must accept if we attempt to include such complexity into our models of extinct taxa.

Muscle Origins and Insertions—While some muscles are characterized by possessing discrete ‘heads’ as discussed above, others are large and fan-shaped with broad attachment sites lacking distinct segregations. Single lines of action spanning from origin to insertion cannot adequately describe the geometry of such muscles, and multiple lines of action with independent origins and insertions may need to be designated a priori (van der Helm and Veenbaas, 1991). Travel paths originating at opposing positional extremes within a given muscle are expected to pass across the joint at different locations, and therefore possess different values of muscle moment arm.

When subdividing fan-shaped muscles, the criteria for selecting the number and location of multiple lines of action are not always made clear, and may be related to position (‘superficial’ vs. ‘deep’), perceived function, or selected in order to capture differing fiber directions within the muscle. The practice of partitioning muscles with large attachment sites is common in human biomechanical modelling (Delp et al., 1990; van der Helm and Veenbaas, 1991; Holzbaur et al., 2005; Chadwick et al., 2009; Arnold et al., 2010; Webb et al., 2012) and is increasingly applied to other extant taxa, particularly in MBDA of skull function (Wroe et al., 2007, 2013; Gröning et al., 2013; Watson et al., 2014). Modern studies benefit from
the incorporation of dissection data and MRI-based imaging of in-situ 3D muscle geometry when subdividing muscles for this purpose. In contrast, the representation of large muscles in paleontological models ranges from single lines of action (with the origin located at the centroid of the attachment site: Ravosa, 1996), to separate bodies representing the two extremes in attachment location (typically anterior-most vs. posterior-most positions, or preacetabular vs. postacetabular: Hutchinson et al., 2005; Bates et al., 2012a; Maidment et al., 2014a), to several lines of action (McHenry et al., 2007; D’Anastasio et al., 2013; Gill et al., 2014).

To illustrate this point, we model the M. latissimus dorsi (LAT) of *Stegosaurus*, a large fan-shaped dorsolateral muscle located posterior to the shoulder joint that is responsible for humeral retraction (Meers, 2003; Dilkes et al., 2012). The scapula is considered fixed relative to the trunk, and the shoulder is modelled as a simple hinge joint permitting only flexion-extension. LAT is simplified into five lines of action, originating from the neural spines and transverse processes of dorsal vertebrae 3–7, travelling posterior to the shoulder joint and attaching at a common insertion point on the posterior shaft of the humerus ventral to the head (Fig. 6).

Tendon length is, of course, another unknown parameter in model construction. If the tendon of LAT was long, and the fibers of LAT merged onto the tendon prior to passing around the shoulder joint, the LAT can be considered to have effectively a single moment arm. However, assuming the tendon was short, LAT would have had numerous lines of action around the joint, and therefore a range of moment arm values. Travel paths were modified by via points located on the rib tubercula, lateral margins of the dorsal ribs and the lateral surface of the scapula blade to prevent intersection with the skeleton (see Muscle Paths, below).
Figure 6A (solid line) illustrates the variation in LAT moment arm with humeral protraction-retraction. At maximum humeral protraction, LAT moment arm values are low and decrease from the most posterior muscle line of action to the anterior-most. At maximum humeral retraction, LAT moment arms are considerably higher. As a percentage of LAT moment arm, divergence between anterior- and posterior-most muscle lines of action is greatest at full humeral protraction, and at a minimum at 40° retraction. Crucially however, the interpreted function of the muscle remains consistent amongst these different lines of action. Whilst incorporating multiple lines of action for a given muscle into a model will more adequately represent the action of a muscle attaching over a large area of the bony surface (van der Helm and Veenbaas, 1991), a single centroid-based muscle path appears sufficient for describing the change in LAT moment arm with joint angle in this particular fossil taxon. Comparisons of single muscle moment arms across taxa and between studies therefore remain valid, but should be accompanied by a description of how the muscle origin centroid was determined to improve the repeatability of the technique.

In many instances, muscle moment arm estimates may be more sensitive to shifts in muscle insertion than origin. As in the case of the LAT (Fig. 6B–E), muscle insertions are often closer to the joint center of interest than muscle origins. Shifting the position of a muscle insertion by a given distance will therefore displace the muscle line of action from the joint center further than an equal shift in the position of muscle origin (O’Neill et al., 2013). In terms of myological reconstructions, the insertion of the LAT on the posterior surface of the humerus has a particularly clear osteological correlate in Stegosaurus (Maidment et al., 2015:fig. 67). Yet whilst the LAT insertion on the latissimus tubercle is well constrained and small in size relative to that of other pectoral muscles, the scar does extend up to 100 mm proximodistally.
In Figure 6D–E, the insertion of LAT has been shifted 50 mm to its proximal-most position on the humerus and Figure 6A (dashed line) illustrates the effect that this change has upon calculated moment arms. The impact of shifting LAT insertion site is negligible at full humeral protraction, and variation introduced through the positioning of muscle lines-of-action at the origin contributes more to variation in LAT moment arms. With increased humeral retraction, however, variability in moment arms due to insertion site position comes to dominate over variation due to muscle origin.

For the purpose of muscle moment arm estimation, this suggests that a shift towards concentrating on improving the identification of muscle insertion locations would be particularly beneficial (Hutchinson et al., 2014). Exceptions will exist, however, in which the joint center is located closer to muscle origin than insertion (as in the case of Stegosaurus, with the origins and insertions of the M. adductor group and M. iliotibialis muscles around the hip). This highlights the idiosyncratic nature of muscle modelling and emphasizes the need for a muscle-by-muscle approach to sensitivity analyses; the same parameters that might strongly affect the moment arm of one muscle may have little or no effect on neighboring muscles acting around the same joint.

Joint Definitions

Joint Centers—Given the geometric definition of a muscle moment arm as the perpendicular distance from joint center to the muscle-tendon unit line of action, it is crucial to accurately determine the position of the joint center when conducting moment arm analyses. Calculated moment arms have been found to vary considerably with estimated joint center in clinical human studies, and in some cases can result in a
shift in predicted function from flexion to extension (Herzog and Read, 1993). Delp and Maloney (1993) estimated that a 20 mm shift in the position of the human hip center may result in a change in percentage moment arms of between 0–38%, dependent upon the direction of shift and the axes about which the moment arms are measured.

Consequently, there is a considerable body of research on methods for accurately determining joint centers in modern taxa, which may be broadly subdivided into geometric and kinematic techniques. Kinematic joint centres are calculated on the basis of instantaneous helical axes, in which the motion of an object can be broken down into a rotation about and a translation along its rotational axis. Kinematic joint centers can be estimated in-vivo or in-vitro via the tracking of anatomical landmarks through the limb range-of-motion using motion capture (Sholukha et al., 2013) or biplanar fluoroscopy (Pillet et al., 2014).

Geometric joint centers are calculated on the basis of fitting simple geometric shapes to joint surfaces, derived from 3D coordinate measurement systems such as microscribes or computed tomographic (CT)/magnetic resonance imaging (MRI) data. Geometric joint centers are considered fixed throughout the range-of-motion, thus ignoring possible translation of one element relative to another (see Joint Type, below). In clinical human trials, joint centers calculated using kinematic and geometric techniques are in broad agreement (e.g., glenohumeral joint: Veeger, 2000; femoroacetabular joint: Klein Horsman et al., 2007; femorotibial joint: Eckhoff et al., 2003). As such, this technique can be considered applicable to disarticulated skeletons, including those of extinct taxa, for which kinematic data cannot be collected.
Within the palaeontological literature, methodological descriptions of the process of determining geometric joint centers range from detailed (Hutchinson et al., 2005; Fujiwara and Hutchinson, 2012) to sparse (Sellers et al., 2013) or entirely absent (Sellers et al., 2009; Maidment et al., 2014b). Typically, the femoroacetabular joint is identified by fitting circles and spheres to the acetabulum and femoral head respectively, and subsequently aligning their centroids (Hutchinson et al., 2005; Costa et al., 2013). The center of the elbow has been similarly defined as the center of the radial condyle and sigmoid notch on the humerus and radius/ulna respectively, calculated through the process of geometric shape fitting (Fujiwara and Hutchinson, 2012). Likewise, the position of the knee joint centre has been estimated by fitting circles to the medial and lateral condyles, and taking the midpoint of the axis joining the centers of both circles (Hutchinson et al., 2005).

As discussed above, the loss of articular cartilage will undoubtedly affect the position of the joint center calculated through the process of shape fitting. However, given the lack of data on the thickness and distribution of cartilage in extant species, it is difficult to account for in extinct taxa. Taphonomic distortion of the epiphyses may also impact accurate identification of joint centers. Figure 7 demonstrates the process of fitting circles to the medial and lateral femoral condyles of Stegosaurus stenops. Figure 7A shows the considerable extent of taphonomic warping present in the distal femoral condyles, in which the condylar long axes have been rotated away from the anteroposterior axis of the femur mediolaterally. First, vertices were manually selected in Meshlab along a line trending anteroposteriorly across the ventral surface of both condyles (Fig. 7B), hence ignoring any taphonomic distortion. Selected vertices were projected onto a sagittal plane cutting through the femur, and best-fit circles were fitted to the coordinates (Fig. 7D–E.) using the ‘circle fit’ function from
MATLAB File Exchange (Bucher, 2004). The center of the knee joint was subsequently calculated as the midpoint of the line connecting the centers of both medial and lateral femoral circles. This process was repeated by selecting vertices describing the main curvature of the condyles, thus taking the rotation of condylar long axes into account (Fig. 7C), and fitting best-fit circles to the data (Fig. 7F–G).

When accounting for deformation, the condylar surfaces approximate a circle more closely than when vertices are selected in a strict anteroposterior plane (Fig. 7D–E vs. Fig. 7F–G), the radii of the fitted circles increase considerably (medial condyle radius increases 21%; lateral condyle radius increases 38%), and the calculated position of the joint center shifts by 12.7 mm. The effect of this upon calculated moment arms around the knee is discussed below. Given the sensitivity of estimated joint centers to the manual selection of surface vertices, and to the presence of taphonomic deformation, it is therefore essential that the process of calculating joint centers be explicitly stated in the study methodology.

Furthermore, the Stegosaurus specimen presented here comprises a nearly complete skeleton, within which the extent of taphonomic deformation can be accurately assessed and compared against other documented Stegosaurus individuals. In contrast, when material is highly fragmentary or of uncertain taxonomic affinity, the degree to which underlying morphology represents ‘normal’ or ‘taphonomic’ processes may be less clear. There is a well-established body of literature on the technique of fossil ‘retrodeformation’ to account for taphonomic effects, and its subsequent impact upon functional analyses. Thus far, these studies have generally focused upon skull morphology, however (Lautenschlager et al., 2014; Cuff and Rayfield, 2015; but see Motani, 1997). Future research should concentrate on the postcranial skeleton, in particular the geometry of long bone epiphyses, to elucidate
the effects of fossilization and potential deformation upon interpreted skeletal
function.

Joint Type—As outlined above, the geometric method of calculating joint
center does not require kinematic data and is solely based upon the surface contours
of the joint. This approach does, however, assume that the joint center remains fixed
relative to the two bodies. Yet in reality, many joints are characterized by some
degree of sliding (translation) in addition to pure rotation. Classically, movement in
the knee joint has been found to comprise both rolling and sliding (Iwaki et al., 2002),
with the condyles of the tibia sliding towards the extensor surface of the femur during
knee flexion (Johnson et al., 2008). Translation at the knee joint has been incorporated
into musculoskeletal models of modern humans (Steele et al., 2012) and chimpanzees
(O’Neill et al., 2013) but has not, to the authors’ knowledge, been investigated in
fossil species.

Likewise, the glenohumeral joint of the shoulder is typically considered as a
simplified ball-and-socket joint with minimal translation (Veeger and van der Helm,
2007). However, movement at the shoulder is a function of mobility at both the
glenohumeral joint and the scapulothoracic gliding plane, and the medial border of the
scapula remains in contact with, and translates/rotates relative to, the thoracic wall.
The contribution of scapula motion to total arm elevation (‘scapulohumeral rhythm’)
is relatively well known in modern humans (Inman et al., 1944; Bolsterlee et al.,
2014), and a musculoskeletal model of the forelimb of Japanese macaques has
incorporated scapula movement as a triaxial gimbal joint (Ogihara et al., 2009;
although this model has thus far only been used in studies of bipedalism). However,
this only provides a first approximation of the wide range of possible scapula motions,
and again, we know of no paleontological musculoskeletal model in which
translation/rotation of the scapula is included. Similarly, biomechanical models of feeding in fossil taxa often assume a simplified hinge for the jaw joint (e.g., Bates and Falkingham, 2012; Wroe et al., 2013; Lautenschlager et al., 2015; but see Snively et al., 2015) despite some degree of translation and/or long-axis rotation being present in both mammal (Noble, 1973; Terhune et al., 2011) and reptile (Jones et al., 2012) jaws. Currently kinematic data on joint translation in non-human species are extremely sparse and, as a result, any attempt to incorporate movement of the joint center into models of fossil species would be speculative. Furthermore, the importance of incorporating translation into joint mobility will vary across taxonomic groups (e.g., between mammals and archosaurs). In contrast, the calculation of a fixed center of rotation based solely on joint geometry is comparatively simple, repeatable and widely applicable across a broad range of paleontological specimens. Ultimately, the degree of complexity incorporated into fossil reconstructions should be a function of the question being considered. If the goal of a study is to generate the most ‘accurate’ model of a particular fossil joint, then an argument can be made for incorporating as much detail as possible on joint mechanics. If, however, the goal is to make broad comparisons of muscle function across a large sample of taxa, assuming a fixed joint center may be more feasible.

When ignoring the role of translation, musculoskeletal joints are typically modelled as fixed hinge joints with one degree of rotational freedom (as in the case of the elbow, knee, and jaw) or ball-and-socket joints with three degrees of rotational freedom (in the shoulder and hip). When assigning joint limits (i.e., the range of motion through which the limb may move), maximum and minimum joint angles are straightforward when assigned to hinge joints operating solely within one plane. In contrast, setting joint limits upon ball-and-socket joints can be considerably more
difficult. At the simplest level, Euler angles can be used to represent motion by three rotations about three different axes. Independent limits can be specified on each Euler angle, however the resulting range of motion has been shown to predict in-vivo motion ranges poorly (Baerlocher and Boulic, 2001). Furthermore, Euler angles are not particularly intuitive (two angles that appear intuitively close to each other may not necessarily have similar Euler angles) and can be difficult to set at sensible values (Sellers, 2014). For the purpose of calculating muscle moment arms in simple anatomical planes, it may be more straightforward to define three orthogonal hinge axes and restrict joint movement to one axis in turn, as opposed to defining true ball-and-socket joints, and this also avoids the potential for gimbal lock.

Muscle Paths

At the simplest level, a muscle can be modelled as a straight line travelling from origin to insertion (Fig. 1), and it is in this manner that early studies of muscle moment arm (then more commonly referred to as ‘lever arm’) in fossils were conducted (Miller, 1915; Fisher, 1945; Maynard Smith and Savage, 1956). An advantage of this ‘dry-bone’ approach is that no assumptions regarding the travel path of the muscle are required, and calculations are based solely upon muscle scarring and estimated joint centers. Furthermore, the data collection process involves straightforward measurements of bone geometry and sample sizes can therefore be large. Recently, a study used a similar idealized origin-insertion model to calculate muscle moment arms around the elbow in a large dataset (n = 318) of extant and extinct tetrapods (Fujiwara and Hutchinson, 2012). Similar sample sizes are currently unachievable when calculating moment arms on the basis of articulated 3D digital models.
However, many studies seek to quantify changes in muscle moment arms with joint angle, and must therefore accommodate complex muscle geometries and muscle paths that shift as the limb moves through its range of motion. In the case of a 3D reconstruction of *Homo neanderthalensis* hamstring muscle paths were modelled as straight lines and did not intersect with the skeleton throughout the range of knee flexion angles considered (Chapman et al., 2010). In most instances, however, the path from origin to insertion is not linear (Gröning et al., 2013). Muscles must therefore be wrapped around objects, or constrained to travel through predetermined points, in order to prevent intersection with the skeleton or unrealistic ‘bow-stringing’ away from the bone surface (Murray, 1995). This is referred to as the ‘centroid approach’ (Garner and Pandy, 2000) in which a muscle path is represented as a curving line connecting cross-sectional centroids along the muscle’s length.

Figure 8A illustrates the problem of muscle paths intersecting with the skeleton. The M. iliotibialis I (ILT1) was reconstructed as travelling in a straight line from its origin on the dorsal ilium to its insertion on the cnemial crest on the tibia. With knee flexion, ILT1 implausibly intersects the skeleton and migrates caudally to the joint centre of rotation, shifting the interpreted muscle function from knee extensor to knee flexor. This highlights the utility of multibody dynamic software packages with graphical user interfaces (GUIs) that allow the user to visualize the model and resulting simulations. It is crucial that the user manually inspects the travel path of each muscle as the limb is moved through its full range of motion in order to detect any potential issues with muscle wrapping or joint impingements. A concern when running numerical musculoskeletal simulations without accompanying visualizations is the ease with which models can be created, and properties assigned, that would otherwise immediately appear unfeasible if the data were viewed as an
articulated skeleton. The process of visually inspecting muscle paths is time consuming, but essential in order to achieve meaningful values for estimated moment arms. In addition, when musculoskeletal models are to be used for MBDA, muscle wrapping has been found to have a notable effect on force generation and the inclusion of complex wrapping (as opposed to straight line origin-insertion) can bring force estimates closer in line with in-vivo measured values (Gröning et al., 2013).

The specific options available for modifying the path of a muscle vary between software packages (e.g., Gaitsym vs. OpenSim; see later discussion). Regardless, a compromise will always exist between anatomical accuracy and muscle paths that can be achieved feasibly within the constraints of the modeling software. Two broad categories for describing changes in muscle path have been used: via points and geometric shapes.

Via Points—Via points constrain the muscle to pass frictionlessly through a specific point in space as defined by Cartesian coordinates, acting as retinacula (Delp et al., 1990). By assigning several via points, complicated muscle paths can effectively be divided into a series of straight-line segments. Figure 8B–C illustrates the path of the M. ischirotrochantericus (ISTR) from its origin on the medial surface of the ischium to its insertion on the proximolateral femur. In this instance, three via points (one on the posterodorsal margin of the ischium and two on the lateral margin of the femur) were necessary to prevent the ISTR from intersecting the skeleton throughout the limb’s full range of motion.

Via points are problematic for a number of reasons, however. By constraining the muscle to pass through a given xyz location, the muscle is prevented from sliding across the bony surface. Furthermore, the moment arm of a muscle around a given joint will be entirely determined by the location of via points fixed immediately to
either side of that joint. In other words, when via points are used to subdivide a complicated muscle path into a series of straight line segments, the calculated moment arm is that of the segment running across the joint in question, as opposed to a reconstructed muscle running the entire anatomical distance from origin to insertion. Osteological evidence of muscle scarring at origin and insertion sites may not, therefore, contribute directly to the calculated moment arms. Instead, the positioning of via points (which are byproducts of the modeling approach) can heavily influence estimated moment arms.

When defining via points, it is necessary to specify the body segment to which they will remain fixed during limb movement. In some instances, when a via point replicates the behavior of a retinaculum located on the bony surface, for example, the appropriate body segment is clear. In other scenarios, via points may be a fixed point in space, some distance from the skeleton (Bates et al., 2012a:fig. 2G around the knee joint of *Lesothosaurus diagnosticus*; Maidment et al., 2014a:fig. 2A–H around the knee joint of several ornithischian dinosaurs). In the aforementioned studies, only muscle moment arms around the hip are calculated. Figure 9 illustrates the behavior of IFB when via points are employed in a similar manner to modify the muscle path around the knee during knee flexion.

Two IFB muscles are included here, both originating and inserting at the same location as described in Figure 9, and both passing through the same via point located posterior to the knee joint center. The two IFB models differ in the body segment to which the via point is fixed; one remaining fixed relative to the femur (IFB₉), and the other fixed to the tibia (IFB₆). With knee flexion, the paths of IFB₉ and IFB₆ diverge (Fig. 9). When remaining fixed relative to the femur during joint rotation, the IFB₉
impinges on the posterior surface of the tibia, whilst the IFB, via point remains stationary relative to the tibia and intersects the posterior surface of the femur.

The knee is a fairly straightforward case in which a clear biomechanical argument could be made for the femur being the most appropriate body segment upon which to attach the IFB via point, due to the likely location of the knee joint center within the distal femoral condyles. In other cases, however, such as the neck, spine, and ribcage, the decision as to which rigid body segment to kinematically link the via point can be more ambiguous. Additionally, Sellers (2014) raises concerns regarding the unrealistic behavior of via points at extreme values of joint rotation (as in Fig. 9), and Garner and Pandy (2000) highlight the potential for discontinuities in moment arms to occur when calculated across joints with more than one degree of freedom.

Geometric Shapes—As an alternative to via points, ‘obstacle set’ wrapping (Garner and Pandy, 2000) seeks to represent anatomical features (such as bony surfaces and underlying soft tissues) as simple geometric shapes including spheres, cylinders, and toroids. Coordinates describing the surface contours of a joint may be collected from CT/MRI, or via the use of a digitizing probe or microscribe on cadaveric or dry skeletal material. Shapes may then be fitted to the bony landmarks using an optimization process (Van der Helm et al., 1992) or via simple best-fitting of circles as illustrated in Figure 7.

In contrast to via points, geometric shapes do not constrain a muscle to pass through a specific xyz position in space, and instead allow the muscle to slide across the surface of the object. Within the paleontological literature, cylinders are most often deployed at the epiphyses of long bones to replicate the wrapping path of muscles around the condyles (Hutchinson et al., 2005; Sellers et al., 2013). Typically, the axis of a cylinder is constrained to pass through the joint center, with the long axis
of the cylinder aligned mediolaterally. The radius of the object can then be set to approximate the contours of the joint surface. Alternatively, geometric shapes can be used to wrap around other bony features distant from the joint surface. For example, Klein Horsman et al. (2007) used cylinders to replicate the wrapping of the M. iliopsoas around the pubic bone in a musculoskeletal model of the human lower extremity. Figure 10 illustrates the use of cylinders to wrap the M. puboischiofemoralis internus (anterior and posterior) around the prepubis of *Stegosaurus*, without which the muscles intersect with the skeleton implausibly. In this instance, the cylinder is not constrained to an anatomical axis and is instead aligned to a particular bony feature.

When using cylinders to approximate joint contours, the appropriate joint center and cylinder radius may be calculated via the process of circle fitting to the condylar surface (as outlined above). If taphonomic damage has occurred simple geometric shapes may be used to reconstruct the former extent of underlying bony or soft tissues. The impact that such retrodeformation may have upon estimated moment arms will vary on a muscle-by-muscle basis. In Figure 11 we reconstruct the path of the M. flexor tibialis externus (FTE) in *Stegosaurus*. Figure 11B illustrates the original model, in which no attempt has been made to correct for the occurrence of taphonomic deformation. Medial and lateral condyle cylinder radii and joint center were calculated as outlined in Figure 7B, D–E. Alternatively, Figure 11C illustrates the path of FTE when wrapped around a modified joint center with cylinders accounting for the effect of deformation, as detailed in Figure 7C, F–G. As seen in Figure 11A, calculated moment arms for FTE are relatively insensitive to the presence of taphonomic damage at the condyles. Beyond 5° of knee flexion, the path of FTE no
longer wraps around the knee joint cylinder, and any discrepancy between models is entirely due to a small shift in the joint center of rotation.

By contrast, when both muscle origin and insertion are located close to the joint of interest, the muscle path may wrap around the fitted joint cylinder throughout most of the joint’s range of motion. In Stegosaurus, the M. femorotibialis lateralis (FMTL) originates on the lateral femoral shaft and attaches to the cnemial crest of the tibia (Fig. 12B). As illustrated in Figure 12A, the moment arm of FMTL remains constant through the entire range of motion of the knee as the path of the muscle remains tightly wrapped around the knee joint cylinder. Furthermore, the value of the moment arm is exactly equal to the radius of the object around which it is wrapped.

The phenomenon of constant muscle moment has been noted previously (Hutchinson et al., 2005), highlighting the sensitivity of calculated moment arms to the estimated size of the joint cylinders. In the case of the FMTL, accounting for deformation of the femoral condyles results in a 28% increase in calculated moment arm throughout the full range of motion at the knee.

Muscles modeled as wrapping around cylinders do appear to behave better (in terms of avoiding skeletal impingement or unrealistic travel paths) than those modeled with via points, particularly at extreme joint angles. A recent musculoskeletal model of an extinct sauropod (Sellers et al., 2013) avoided the use of via points altogether, opting instead for simplified geometric wrapping surfaces at the joints. Regardless of the particular path modifier chosen, muscle function is often assumed a priori when determining the path of a muscle. For example, when wrapping a muscle around a cylinder, the direction of wrapping must be manually assigned. In Figure 11B, the FTE has been explicitly modeled as travelling posterior to the joint center and the associated wrapping cylinder, and its function has therefore
been constrained as a knee flexor. Therefore, whilst the general aim of many fossil moment arm studies is to investigate muscle ‘function’, it must be recognized that the broad function of many muscles (i.e., flexor vs. extensor) has already been predetermined by virtue of the wrapping parameters chosen, and the EPB-based myology upon which the model is based.

Finally, the layering of neighboring soft tissues such as muscle and tendon may also be taken into consideration when defining individual muscle paths and wrapping. Several studies calculating muscle moment arms have attempted to account for this effect, with inferior muscles wrapping closer to joint surfaces than those lying superior (Hutchinson et al., 2005). However, estimates of the likely thickness of underlying muscle and tendon in fossils should be based on modern dissection data, of which little has been published outside the clinical literature. Additionally, our current models cannot account for shortening and thickening during contraction in surrounding soft tissues and any potential effect that this may have upon calculated moment arms. As such, it would be prudent to restrict modeling to individual muscle-tendon units in isolation from other neighboring soft tissues, in order to minimize subjectivity and improve repeatability in model creation.

Biarticular Muscles—Several of the muscles included in the present model are biarticular (i.e., span more than one joint). In common with most modern cadaveric analyses of muscle moment arms (e.g., Channon et al., 2010), here we fix the additional joint whilst manipulating the joint of interest through its range of motion. Elsewhere, calculated muscle moment arms around the ankle have been shown to be relatively insensitive to knee flexion (Holokwa and O’Neill, 2013). This suggests that the simplification of fixing additional joints may not unduly affect
calculated moment arms around joints of interest, although further data from living taxa are required to confirm this. It must also be recognised that a biarticular muscle moment arm around one joint will be sensitive to the wrapping parameters of a neighbouring joint. Moment arms calculated around the knee, for example, are determined in part by the position of the hip wrapping surface, which is itself a function of the hip joint center location and wrapping geometry. Uncertainty in one joint can therefore permeate calculations of moment arms around neighbouring joints. In the case of biarticular muscles, sensitivity analyses may therefore benefit from incorporating uncertainty in both joints.

INTER- AND INTRASPECIFIC VARIATION IN MUSCLE MOMENT ARMS

Making Interspecific Comparisons between Fossil Taxa

The foregoing discussion considers how the muscle moment arms of a single fossil individual may be calculated. Yet absolute values for the moment arms of a single individual are rarely of interest. Rather, comparative studies of numerous fossil species may be undertaken in order to quantify changes in muscle function within or between lineages, or higher order biomechanical variables assessed via forward dynamics approaches. When comparing a linear metric such as muscle moment arm between species, geometric similarity would predict absolutely larger animals to possess larger moment arm values. Therefore, in order to tease functional signals and overall body size signals apart, it is necessary to normalize muscle moment arm values.
Osteometric scaling is a well-established practice in the human clinical literature (Sommer et al., 1982; Duda et al., 1996), and facilitates inter-specimen comparisons of muscle attachment sites. In comparative studies across modern taxa, limb muscle moment arms have been scaled by segment length (that is, moment arms calculated around the hip and knee are normalized to femur length, whilst those around the ankle are normalized to tibia length) (Payne et al., 2006; Crook et al., 2010). This methodology has been applied to hind limb muscle moment arms calculated for comparative samples of dinosaur taxa (Bates et al., 2012b; Maidment et al., 2014a). Likewise the moment arms of jaw muscles acting around the temporomandibular joint have been normalized to mandible length in extant (Smith and Redford, 1990) and extinct (Vizcaíno and Iuliis, 2003) species.

The motivation behind normalizing muscle moment arms by segment length is often to control for ‘body size’. By removing size-related signals from moment arm data, any functional signals of interest will become more apparent. When dividing muscle moment arms calculated around the hip by femoral length, for example, there is an assumption that femoral length is strongly correlated to overall ‘body size’ and does not itself contain a functional signal. Yet this is not the case. Several independent studies have found long bone length is often a less accurate predictor of body mass in modern vertebrates relative to cross-sectional properties (Damuth and MacFadden, 1990; Campione and Evans, 2012), and segment length may contain a strong functional signal (Brassey et al., 2013). The elongated zeugopodium of modern wading birds is an extreme example.

When attempting to remove ‘body size’ from an analysis of moment arms, a metric known to be highly correlated with body mass in modern species (such as stylopodial circumference or diameter: Campione and Evans, 2012; Brassey et al.,
2013) could be applied to normalize the data. Figure 13 illustrates the effect of normalizing moment arm values calculated for the M. caudofemoralis longus (CFL) around the hip in *Stegosaurus* and *Kentrosaurus aethiopicus* (see Maidment et al., 2014a for model details), a smaller Late Jurassic stegosaurian. By normalizing CFL moment arms by linear dimensions of the femur, values for the two species are brought into closer agreement. Whilst the rank order of the two species does not change (*Stegosaurus* consistently has larger values for CFL moment arm than *Kentrosaurus*), the extent of the divergence between the two species does differ depending upon the normalizing metric applied. Peak CFL moment arms in *Stegosaurus* are 19% greater than those of *Kentrosaurus* when normalizing to femur length, compared to 38% when normalizing to anteroposterior diameter (Fig. 13B vs. Fig. 13D).

However, this approach still requires a judgment to be made regarding which skeletal metric should be preferred. Alternatively, an osteometric scaling approach based on procrustes superimposition of skeletal elements could be applied to remove the effects of translation, rotation, and scaling, and quantify the impact of changes in bone geometry and attachment sites on muscle moment arms. A geometric mean of several skeletal variables could also be used. In reality, however, the occurrence of taphonomic damage and weathering may preclude the application of a particular metric to a given group of fossils, and normalization of a dataset should be considered on a case-by-case basis. To facilitate future comparisons, the process of moment arm normalization should be explicitly described in the methodology. In addition, the potential for the normalization process to change the rank order of calculated moment arms within the sample should be recognized.
Intraspecific Variation in Moment Arms

In addition to interspecific differences, evidence from the clinical literature suggests that within-species variation in muscle moment arms can also be considerable. In human adults, the relationship between moment arm and joint angle typically describes an overall similar curve between individuals, whilst possessing different absolute values (in the knee: Herzog and Read, 1993; and elbow: Murray et al., 2002). Much of the difference in absolute values is attributed to intraspecific variation in total body size. Yet, despite performing osteometric scaling on the basis of markers and reference points, Duda et al. (1996) still found considerable differences in the position of femoral muscle attachment centroids across a sample of humans, resulting in moment arm standard deviations of up to 65% of the mean in some muscles. Therefore, even when accounting for changes in overall body size, intraspecific variation in muscle attachment sites is likely to be present in calculated muscle moment arms.

Outside of humans, few data exist for extant taxa regarding within-species variation in attachment sites and muscle moment arms (but see Smith et al., 2007). Within the body of available data, confounding epigenetic factors confuse matters further, including adaptations in response to exercise regimes in captive zoo animals and domesticated species. Ontogeny also has an impact on moment arms, with muscles shifting their location relative to one another, and to the joint they act around, with age (Carrier, 1983; Young, 2005; Singleton, 2015). The moment arms calculated herein for a subadult Stegosaurus specimen, for example, may not be directly comparable to those of a mature individual of the same species, or to adult specimens of closely related taxa.
Intraspecific variation is rarely considered in paleontological musculoskeletal reconstructions, however, due either to lack of specimens or constraints associated with the time-consuming process of model creation. Yet given the substantial inconsistency in muscle attachment positions (and hence moment arms) in modern humans, further research into the relative magnitudes of inter- and intraspecific variability in moment arms across modern comparative samples may be necessary. If between-species variation in moment arms is found to dwarf that within-species, then we may have more confidence in attributing patterns in calculated moment arms of fossil species to functional shifts within lineages.

VERIFICATION AND VALIDATION OF MUSCLE MOMENT ARM MODELS

The discussion provided above outlines the process of generating musculoskeletal models for fossil taxa from which muscle moment arms may then be calculated. Yet, in addition to creating an accurate 3D representation of a fossil skeleton and associated musculature, it is important to verify and validate model results. In their review of computational modeling of the neuromusculoskeletal system, Hicks et al. (2014) considered the best practices for verifying and validating biomechanical models of muscles and movement. These authors emphasized the difference between verifying MDBA software (‘are we solving the equations correctly?’) and validating model results (‘are we solving the correct equations?’).

Verification

For users, the process of verifying whether or not MBDA software is implementing algorithms correctly has been mostly completed.
well-established software modules (either commercial or open source), most source
code has been independently verified by an extensive user community. Commercial
packages such as SIMM (Delp et al., 1990), Adams (MSC Software Corp.), and
AnyBody (AnyBody Technology) have already been successfully applied to a wide
spectrum of biomechanical problems, including non-human extant taxa (frog: Kargo
and Rome, 2002; horse; Brown et al., 2003; tuatara: Curtis et al., 2010; rat: Wehner et
al., 2010; rabbit: Watson et al., 2014; pigs: Basafa et al., 2014) and occasionally
fossils (Hutchinson et al., 2005; Snively et al., 2013).

The above-mentioned software packages do not, however, provide full access
to the source code. OpenSim (Delp et al., 2007) and Gaitsym (Sellers, 2014) are
open-source alternatives. OpenSim uses SimBody as its physics engine, and has been
applied in numerous non-human studies, including the macaque forelimb
(Schaffelhofer et al., 2015), and chimpanzee (O’Neill et al., 2013), sheep (Lerner et
al., 2015), and rat (Johnson, 2009) hind limbs. Likewise, Gaitsym is open-source and
uses the Open Dynamics Engine (ODE) physics library to perform most rigid body
dynamics calculations. Gaitsym (and its precursors) have been applied to MBDA of
both extant (human: Sellers et al., 2010; chimpanzee: Sellers et al., 2013) and extinct
(hominoid: Nagano et al., 2005; Sellers et al., 2005; dinosaur: Sellers and Manning,
2007; Bates et al., 2012a, b; Maidment et al., 2014a) taxa.

A recent study comparing the results of MBDA run using various physics
engines (including ODE, Bullet, and Simbody) reassuringly found only minor
differences in performance when applied to a simple walking task (Peters and Hsu,
2014). However, as far as we are aware, a straightforward comparison of moment arm
values calculated for equivalent musculoskeletal models across different MBDA
software packages has yet to be attempted. Such a comparison could potentially prove
interesting, as current MBDA packages differ considerably in the muscle wrapping parameters available to users. For example, while muscles may be modelled as wrapping around toroids in OpenSim, GaitSym only allows muscle wrapping around cylinders. Models created in one package may not, therefore, be directly imported and verified in another. Finally, 3D moment arm calculations are essentially simple trigonometry problems, and may be verified using back-of-the-envelope calculations. Moment arm values calculated from detailed 3D musculoskeletal models employing complex muscle-wrapping should therefore be verified using this simplified approach to ensure that both techniques converge on similar results.

Validation

Validating the outputs of musculoskeletal models for extinct species is obviously impossible. Therefore, for a biomechanical reconstruction technique to be considered reliable when employed in paleontology, its validity can only be approximated by applying it to relevant extant taxa (Hutchinson, 2011). When attempting to validate techniques for calculating muscle moment arms and inferring muscle function, we can ask the following questions related to modern taxa: 1) do muscle moment arms calculated using musculoskeletal models agree with experimental values?; and 2) do calculated muscle moment arms contain an obvious functional signal?

How do Muscle Moment Arms Calculated using Musculoskeletal Models Compare with those Measured Experimentally?—Within clinical biomechanics, there exists a substantial body of research comparing moment arm estimates derived from mathematical models to those estimated experimentally, due to the considerable advantages associated with avoiding invasive procedures or dissections. Numerous
studies have found human moment arm estimates calculated from 3D computer models to fall consistently within the range of empirical data, for both ‘simple’ hinge joints such as the elbow (Murray et al., 1998) and more 'complex' joints including the knee (Arnold et al., 2000; Gatti et al., 2007). In non-human studies, a similar pattern is present in the hip and knee joints of frogs (Kargo and Rome, 2002) and chimpanzees (O’Neill et al., 2013), and the distal forelimb of horses (Brown et al., 2003), in which moment arms estimated from 3D musculoskeletal models have been found to be well-matched to those calculated experimentally, typically via the tendon-travel method. In some situations, it has been suggested that 3D modeling may be preferable to the tendon-travel method, due to the potential for muscle lines-of-action to be altered through the process of excising surrounding soft tissues during dissection (Hutchinson et al., 2015). Thus, the broad agreement between experimental and model results in extant taxa supports musculoskeletal modeling as a valid approach to calculating muscle moment arms in extinct taxa assuming a reliable myological reconstruction is available. The modern studies cited above rely upon detailed dissection data to inform the model-making process, something that is obviously unobtainable for fossil taxa. Whilst the agreement between techniques gives us confidence in 3D models as a means of calculating moment arms, musculoskeletal modeling is still subject to the phenomenon of ‘Garbage In, Garbage Out’ (GIGO), and the value of the moment arms output is directly a function of the quality of the myology upon which the model is based.

Functional Signals in the Muscle Moment Arms of Extant Species—For a given property to be informative when applied to the fossil record, it must be first understood in extant taxa. In the case of muscle moment arms, values derived from fossil species are rarely of interest in and of themselves, but are instead used as a
proxy for musculoskeletal function. Yet, as highlighted by Gans and De Vree (1987:76): “It remains necessary to check whether sites at which muscles are placed differ interspecifically and whether the functional [...] implications of these differences match possible differences in role. If they do not, it is likely that the character state reflects phylogeny more than function”. Whilst dissection-based myological descriptions have a rich history in the field of modern comparative anatomy, and muscle moment arms are increasingly reported, the relationship between gross muscle architecture and muscle function across broad comparative datasets remains less than clear.

In some instances, the calculated muscle moment arms of extant taxa may contain a functional signal. Rat hind limb muscle moment arms have been found to vary considerably throughout the physiological limb range of motion, yet peak and remain relatively constant within the range of motion domain occupied during locomotion (Johnson et al., 2008), implying moment arms may be indicative of dynamic limb posture. A caveat is that most rodent locomotion studies, such as Johnson et al. (2008), rely upon skin markers for their kinematics, which may poorly reflect the behavior of the underlying joints (Bauman and Chang, 2010). Likewise, the hardness of food items has been shown to influence mandible shape, and hence the mechanical advantage (ratio of the inlever and outlever) of several masticatory muscles in laboratory mice (Anderson et al., 2014), implying jaw muscle moment arms may correlate to dietary preference. Yet elsewhere, the moment arms of ostrich hind limb antigravity muscles calculated via 3D modeling were not found to peak at angles corresponding to mid-stance of walking and running during gait trials (Hutchinson et al., 2015), suggesting that there may not be a straightforward relationship between limb posture during stance phase and moment arms.
Additionally, the functional characteristics of muscle architecture can be studied on three levels (Gans and De Vree, 1987): 1) muscles within the organism; 2) fibers within the muscle; and 3) sarcomeres within the fibers. While paleontologists are restricted to the reconstruction of gross myology, there is mounting evidence that organisms primarily adapt their musculature to prevailing biomechanical conditions by changing intrinsic muscle properties. An increase in muscle moments within the limbs of sprinting racehorses relative to endurance horses has been attributed to increased muscle volume and physiological cross-sectional area rather than moment arm, for example (Crook et al., 2010). Similarly, modern gibbons have been found to employ a variety of compromises between fiber length and moment arm in order to achieve diverse biomechanical objectives (torque vs. control) within the hind limb (Channon et al., 2010), and adaptation to different feeding strategies in feline jaw muscles has been identified primarily in muscle fiber length (Hartstone-Rose et al., 2012).

In reality, the potential for a muscle to produce a moment is a function of both its moment arm and its ability to generate force, which is itself influenced by muscle size and internal organization. It may, therefore, be the ‘totality’ of the muscle architecture that is under the influence of selection (Gans and De Vree, 1987), without a well-defined relationship between one particular variable (such as moment arm) and a given function. Until a correlation between moment arm and function can be broadly identified across a range of modern taxa, the interpretation of moment arms calculated for extinct taxa should be approached with caution (Maidment et al., 2014a).

SUMMARY
In the preceding discussion, we outline the process of generating a musculoskeletal model for the purpose of muscle moment arm calculations in fossil specimens. In doing so, we highlight the model parameters to which calculated moment arms are particularly sensitive or robust. As a field, paleontology is increasingly engaging with methods of specimen digitization and musculoskeletal simulation and it is tempting to create ever more detailed and sophisticated models of extinct species. It is crucial, however, that our desire to generate ‘realistic’ models of fossil taxa does not outstrip the extent to which we may make reasonable inferences regarding the individual, and that we avoid becoming so ‘seduced’ by a technique that we might end up with models we no longer understand (Anderson et al., 2011).

It is beneficial, therefore, to refer back to the hierarchy of biomechanical questions outlined in the Introduction, to which muscle moment arm analyses are frequently applied. When utilizing musculoskeletal models to predict the role of an individual muscle around a joint (e.g., flexor vs. extensor), we might reasonably have confidence in the interpretation of muscle moment arms, as uncertainty in factors such as wrapping cylinder radii or joint center location are unlikely to change the fundamental action of a muscle. Variation in such parameters will impact upon moment arm magnitudes, however, and thus may change the rank order of individuals within a broad interspecific sample and fundamentally affect the interpretation of a dataset. Consequently, it is currently unclear whether moment arm analyses may be appropriately applied to test broader evolutionary hypotheses regarding changes in biomechanical function between lineages. Furthermore, the functional signal contained within the moment arms of extant species can often be contradictory. Until the methodology outlined above for the calculation of muscle moment arms can be
shown to reliably illuminate aspects of biomechanical function in extant taxa, paleontological studies of moment arms are being held at an “impasse” (Hutchinson et al., 2015:1).

Looking to the future, it is worth considering how we wish to use muscle moment arm data when applied to the fossil record. Is it important to understand the mechanical signal contained within muscle moment arm data? Or can muscle moment arms be used in a purely statistical sense, as a correlate for another parameter of interest? And, if the latter is the case, are complex models and simulations required to capture this data? 3D musculoskeletal models are still labor intensive, and their usage necessarily restricts sample sizes. If the aim of analysis is simply to ‘bin’ extinct species into disparate categories, such as ‘cursorial vs. digging’, or ‘upright vs. sprawling’, discriminant analyses on modern datasets of 2D moment arms may be more appropriate. Such analyses may be based on straightforward linear osteological measurements (Fujiwara and Hutchinson, 2012), facilitating the collection of large modern datasets without the need for extensive dissections or complex 3D muscle wrapping paths in our models. Statistical analyses such as these would also allow confidence limits to be ascribed to any predictions of potential function.

Alternatively, if 3D musculoskeletal models are favored, muscle moment arms may simply be a ‘means to an end’ for calculating other meaningful biomechanical parameters using powerful tools such as FEA, inverse- or forward MBDA. In this instance, muscle moment arms do still function as statistical correlates for the maximum moment-generating capacity of muscles. Such analyses can provide important insights into the functioning of muscle groups during locomotion, and may even generate gaits de novo. These studies do, however, require additional assumptions regarding the physiological cross-sectional area of muscles, fiber and

53
tendon lengths, and muscle activation patterns. Fundamentally, the quality of the fossil and the existence of modern analogues with associated anatomical data should dictate the complexity of the question being addressed, and by virtue the detail required within the model.

Moving forward, it is also essential that moment arm analyses pass the fundamental test of reproducibility. Previous paleontological studies have claimed that comparisons between musculoskeletal models may be easily made, as the 3D moment arm technique is quantifiable and repeatable (Maidment et al., 2014a). However, the extent to which moment arm calculations are reproducible has rarely been confirmed (although see Bates et al., 2012a). In addition to inter-observer variation in the interpretation and implementation of a given myology, variation in wrapping parameters between MBDA software packages makes repetition of results across studies challenging. Future studies should seek to standardize the reporting of musculoskeletal model parameters, in order to facilitate data sharing and model reproducibility.

ACKNOWLEDGMENTS

We are grateful for the insightful comments of Matthew Bonnan, John Whitlock, and one anonymous reviewer. The authors would also like to thank Bill Sellers for useful discussions and for his efforts in creating and maintaining GaitSym. We also express our sincere thanks to Jeremy Herrmann and the 69 other donors who made acquisition of the Stegosaurus specimen possible.

LITERATURE CITED

Falkingham, P. L. 2012. Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica 15:1.1T. http://palaeo-electronica.org/content/issue1-2012technical-articles/92-3d-photogrammetry

Fox, R. C. 1964. The adductor muscles of the jaw in some primitive reptiles.

University of Kansas Public Museum of Natural History 12:657–680.

Lautenschlager, S., C. A. Brassey, D. J. Button, and P. M. Barrett. 2016. Decoupled form and function in disparate herbivorous dinosaur clades. Scientific Reports 6:26495. DOI: 10.1038/srep26495.

PLoS ONE 8:e57683. DOI: 10.1371/journal.pone.0057683.

Wroe, S., U. Chamoli, W. C. Parr, P. Clausen, R. Ridgely, and L. M. Witmer. 2013. Comparative biomechanical modeling of metatherian and placental saber-

Submitted November 23, 2016; accepted Month DD, YYYY.
FIGURE 1. Schematic of human M. triceps moment arm calculation illustrating the 2D origin-insertion method. Moment arm is calculated as the perpendicular distance from the muscle line of action to the joint center [Intended for column width].

FIGURE 2. A 3D articulated model of Stegosaurus stenops in right lateral view. Red lines represent a pair of antagonistic ‘driver’ muscles attaching to the midshaft of the anterior and posterior surface of the femoral midshaft, used for driving the position of the femur to extreme hip flexion and hip extension respectively. [Intended for column width].
FIGURE 3. Quantifying the effect of articular cartilage on M. iliofibularis (IFB) moment arms measured around the knee. A, solid line represents IFB moment arm without articular cartilage separating the distal condyles of the femur and proximal surface of the tibia, as illustrated in B; dotted line represents moment arm of IFB calculated with an additional 10% of length added to the femur and tibia (of which half is located at the knee) while joint center remains unchanged, as illustrated in C; dashed line represented IFB moment arm calculated with 10% additional cartilage and joint center shifted distally, as illustrated in D. [Intended for 2/3 page width].
FIGURE 4. Quantifying the effect of the positioning of the pubis on M. ambiens (AMB) moment arms measured around the hip. Positive values for moment arms imply hip extension, hip adduction, and lateral femoral rotation for FlexExt, AbdAdd, and LAR respectively. Solid lines represent AMB FlexExt, dashed lines represent...
AMB AbdAdd, and dotted lines represent AMB LAR. Path of AMB marked in red on skeletal model. A, illustrates the pubis orientated parallel to the iliac blades; B, illustrates pubis rotated medially from this position. [Intended for column width].

FIGURE 5. Determining range of motion in the hip. A, hip flexion of 60° results in collision between the femur and last dorsal ribs whereas; B, hip flexion of 50° could have been achieved without contact between the hind limb and torso. This reflects the bony limits to range of motion, whilst the physiological limb postures achievable may have been more limited. [Intended for column width].
FIGURE 6. A, variation in M. latissimus dorsi (LAT) moment arm with humeral protraction-retraction for five lines of action. A negative joint angle is protraction, while a positive joint angle is retraction. A positive moment arm indicates shoulder retractor leverage. Solid lines, centroidal insertion of LAT on posterior surface of the humerus, as illustrated in B–C. Dashed lines, LAT insertion shifted to most proximal extent, as illustrated in D–E. [Intended for 2/3 page width].
FIGURE 7. The calculation of knee joint center via circle fitting to the medial and lateral condyles. **A**, ventral view of the distal femoral condyles displaying taphonomic distortion; **B**, markers indicate the vertices at which coordinate data was collected for
the medial condyle along a line running anteroposteriorly; C, coordinate data collected from vertices located along a line describing the long-axis of the distorted medial condyle; D–E, circles fitted to the medial and lateral condyles respectively, based on vertices sampled in a strict anteroposterior plane; F–G, circles fitted to medial and lateral condyles when accounting for warping of the condylar long axis. Colored dots indicate centroid of circle. [Intended for 2/3 page width].

FIGURE 8. A, M. iliotibialis 1 intersects the surface of the femur when the knee is flexed if modeled as travelling in a straight line from origin to insertion; B–C, travel
path of M. ischi trochantericus defined by a series of straight line segments separated by fixed via points. [Intended for column width].

FIGURE 9. Muscle paths of the M. iliofibularis (IFB) from knee extension (left) to full flexion (right). IFB$_f$, via point fixed relative to femur; IFB$_t$, via point fixed relative to tibia. The path of IFB is strongly affected by the body segment to which the via point is fixed. Both muscle paths intersect the skeleton at high values for knee flexion, highlighting the importance of visually inspecting models throughout the entire limb range of motion. [Intended for page width].
FIGURE 10. Muscle paths of the M. puboischiofemoralis internus (anterior and posterior) in *Stegosaurus stenops*. A, muscle paths intersect implausibly with the prepubis with increased femoral flexion when modelled as simple origin-insertion straight paths. B, muscle paths wrap around a cylinder positioned correspond to the surface contours of the prepubis, preventing intersection with the skeleton. [Intended for 2/3 page width].
FIGURE 11. Calculation of moment arms for the M. flexor tibialis externus (FTE) in *Stegosaurus stenops*. A, variation in FTE moment arm with knee flexion. Positive values for moment arm indicate leverage for knee flexion. B, original model in which calculated joint center and cylinder radius is based upon deformed distal femoral condyles. C, modified model in which joint center and cylinder radius is altered to account for taphonomic damage, as outlined in Figure 7. [Intended for column width].
FIGURE 12. Calculation of M. femorotibialis lateralis (FMTL) moment arm in *Stegosaurus stenops*. Positive values for moment arm indicate leverage for knee extension. **A**, FMTL moment arm is constant throughout the entire range of motion of the knee; **B**, the path of FMTL is tightly constrained to wrap around the knee joint cylinder. Dashed line, moment arm around deformed condyles; solid line, moment arm calculated around retrodeformed condyles (as outlined in ‘Joint Centers’ section). [Intended for column width].
FIGURE 13. Moment arms calculated for M. caudofemoralis longus (CFL) around the hip in *Stegosaurus stenops* (solid line) and *Kentrosaurus aethiopicus* (dashed line). Positive values for moment arm indicate leverage for hip extension. A, moment arm values without normalization; B, moment arm normalized to femur length; C, moment arms normalized to mediolateral (ML) diameter; D, moment arm normalized to anteroposterior (AP) diameter. [Intended for 2/3 page width].