NON-UNIFORM ONSET OF NUCLEATE FLOW BOILING OF R-134A INSIDE A GLASS MINICHANNEL

Chiara Baldassari, Mauro Mameli, Marco Marengo

Department of Engineering, University of Bergamo, Viale Marconi 5, Dalmine (BG), 24044 Italy, marco.marengo@unibg.it Ph. +39 0352052002, Fax +39 0352052077

KEYWORDS
Flow boiling, onset nucleate boiling, flow pattern, HFC134a refrigerant

ABSTRACT
Even if far from being completely characterized, convective boiling inside mini- and micro-channels is likely to be one of the most relevant process for enhancing the cooling capability of modern heat transfer devices. Since, due to the process miniaturization, many novel devices are very small, fully developed flows are difficult to achieve, and therefore the knowledge of the onset nucleate boiling (ONB) position is even more critical for cooling design. However visualization of the ONB phenomena is not common in the literature, since usually the heaters are made in opaque metals and therefore they are not allowing a complete imagining. The present work consists in an experimental investigation of the incipient boiling of R134a inside a circular glass mini-channel mounted horizontally and equipped with a series of transparent Indium Tin Oxide (ITO) heaters. The effects of the heat flux input levels and the refrigerant mass fluxes on the ONB process and on the saturated boiling heat transfer rate are quantitatively explored. The flow pattern visualizations, carried on by means of a high-speed camera, show that the nucleation process is oddly non-uniform: the first vapor bubbles are always generated on the upper side of the tube and lead to a first wall temperature drop. A further increase in the heat flux values results in an increased wall superheat until bubbles nucleation originates also on the lower side of the tube causing a second wall temperature drop. Finally, at higher heat input levels, the boiling process becomes uniformly distributed on the inner tube surface. This phenomenon occurred also after a 180° rotation of the glass

1 Corresponding author
tube and, after a critical analysis of the potential origins, it remains presently unexplained. An evaluation of the heat transfer coefficients for low vapor quality regimes is finally presented.

1. INTRODUCTION

Characterizing two-phase heat transfer phenomena inside mini and micro flow boiling systems is fundamental to understand how to increase the cooling capability of modern heat transfer devices. The need of an increased cooling capability is due to the smaller size of the components and the consequent higher specific heat generation. The complex nature of two-phase flows in mini and micro-channels needs still to be completely understood, as underlined by Thome [1,2], Celata [3], Harirchian and Garimella [4] and recently reviewed by Baldassari and Marengo [5]. After more than 30 years, flow patterns, void fraction measurement, heat transfer coefficient evaluation, onset of nucleate boiling are still open research topics for the flow boiling in mini and microchannels [5,6]. Focusing on the ONB, which marks the boundary between the single-phase and two-phase heat transfer region, Ghiaasiaan et al. [7] developed a semi-empirical method for the estimation of the incipient boiling heat flux. Bang et al. [8] performed a digital photographic study of subcooled flow boiling to observe near-wall structures, giving primary attention to bubble formation and bubble coalescence in the bubble layer. Callizo et al. [9] presented boiling curves for R-134a and a comparison between the experimental heat transfer coefficients and the predictions from classical correlations. Liu et al. [10] investigated experimentally ONB of water in a rectangular micro-channel developing an analytical model able to predict the heat flux and the bubble size at the onset of boiling. Recently, Hong et al. [11] found that the heat flux and wall superheat needed to initiate the nucleate boiling in narrow rectangular channel under static conditions, increased with the mass flux and the inlet subcooling.

The present paper focuses on the experimental analysis of the heterogeneous onset of nucleate flow boiling of R-134a in a mini-channel having 4 mm internal diameter, with a particular non symmetrical physical outcome, which is making the present research inspiring further investigations. In fact the use of a transparent glass tube with transparent heaters allows the visualization of the ONB and evidences a gradual activation of the nucleation sites, starting from the upper side of the heater to the lower side, for all the tested mass flux. The corresponding boiling curves evidence two different temperature drops, associated to the starting of the nucleation from the upper side and from the lower side of the heater, respectively. Two temperature drops have been also observed by Piasecka et al. [12] during
their boiling investigation. They found a two-stepped phase of the boiling phenomenon, similar to a second kind hysteresis, characteristic of nucleate pool boiling on developed micro-surfaces. They could not associate this kind of non-uniform condition to the flow pattern observation, since their experimental test-rig was not able to capture the bubble formation. In the present paper, ONB is visualized and recorded by means of a high-speed camera thanks to the ITO heaters, whose transparency allows a full characterization of the earliest stages of the bubbles formation. Several boiling curves are presented at different mass flux levels, G = 50, 80, 100, 115 and 137 kg/m²s together with the flow pattern visualization. Finally the heat transfer coefficient is calculated as a function of the heat flux and of the wall superheat for each mass flux.

Figure 1 Experimental test rig scheme

2. EXPERIMENTAL SET-UP AND PROCEDURE

2.1 Experimental set-up

A schematic view of the experimental apparatus is given in Figure 1. The test section tube is made of high precision glass (DURAN) with an internal diameter of 4 mm. The Eotvos number \(E_o = g (\rho_L - \rho_v) L^2 / \sigma \) is hence set to 21.7, i.e. the flow boiling process is studied in the so-called macroscale region. The transparent ITO film covers eight portions of equal length (40 mm) and each independent portion is used to electrically heat the glass surface allowing to observe and record the boiling mechanisms taking place inside the tube with a high speed PCO® camera. The minichannel is enclosed in a co-axial glass tube with 60mm external diameter vacuumed in order to eliminate the convection heat losses and consider only
radiation losses. The temperature of the tube wall is monitored by means of eight K-type thermocouples (±0.2°C after calibration) placed externally on each heater at the upstream side and at the middle of the tube height, as represented in Figure 2.

Figure 2 ITO heater and the position of the K-type thermocouple

During this experimental campaign one heater with a heat flux up to 30 kW/m² has been used. Refrigerant temperature is measured both at the test section inlet and outlet by two K-type thermocouples; the pressure is measured at the inlet by a PSE 510 pressure sensor.

The test rig consists of two main circuits: the test refrigerant loop and a secondary loop, where the fluid is thermally controlled. The loop is filled with R134a until the internal pressure reaches 6 bar, in order to bring the saturation temperature just below the ambient temperature. A helix type heat exchanger is cooled by means of a thermal bath HAAKE C50P®; this unit is necessary to define the operating experiment temperature and to condense the fluid coming from the test section in the form of wet vapor. The mass flow rate is measured by a Coriolis flow meter CORI-FLOW®. ITO coatings power is controlled by the PC through the NI (National Instruments) USB-6008® acquisition and control device and by the specifically designed electronic board, which is supplied with a 56V DC power supply. The electronic board applies the correct value of voltage to the heater in order to reach the desired electrical power and amplifies the coating voltage and current signals so that these can be acquired by the data acquisition module and transmitted to the PC. The radiation heat transfer between the ITO coating and the environment is numerically estimated and subtracted to the total power supplied to the ITO coatings in order to obtain the net thermal power supplied to the working fluid; this value is controlled with a standard PID (proportional-integral-derivative).

Temperature and pressure signals are acquired using Agilent 34970A®. The system control, data acquisition software has been developed with Simulink® and dedicated MATLAB®
programs have been developed for the data post processing. Other details on the test rig are given in [13].

2.2 Experimental procedure

Before running the experiments, the coaxial glass chamber is vacuumed, the mass flux is adjusted to the desired value, the fluid inlet temperature is set in order to enter the test section in sub-cooled condition of maximum 2K, and the system works as close as possible to the saturated boiling conditions. The heater power supply is set to the desired value which is maintained until a steady tube temperature is reached. Mass flux, temperature, pressure and power input values are stored using the data acquisition system. In order to define the characteristic boiling curves, the power supplied to the fluid is increased, starting from 0 W, with increments of 0.5 W in the regions near the onset of nucleate boiling, and of 1 W in the other regions until the maximum power \(Q_{\text{max}} = 11 \text{ W} \). Then the power level is decreased from the maximum value to 0 W with step of 1 W. For each heat flux step, the corresponding flow pattern is visualized and recorded using the high-speed camera. In order to provide the necessary amount of light, a incandescent lamp is positioned in front of the camera. Because the lamp temperature is very high, a glass covered with an infrared filtering film has been located between the lamp and the test section, in order to minimize the radiated power.

The experimental procedure explained above is repeated two times for every mass flux value examined, namely \(G = 50 \text{ kg/m}^2\text{s} \), \(G = 80 \text{ kg/m}^2\text{s} \), \(G = 100 \text{ kg/m}^2\text{s} \), \(G = 115 \text{ kg/m}^2\text{s} \) and \(G = 137 \text{ kg/m}^2\text{s} \) in order to check the repeatability. Finally the temperature difference, usually called wall superheat, is calculated for each heat input level:

\[
\Delta T_{\text{sh}} = T_{\text{w,in}} - T_{\text{sat}}
\]

(1)

where \(T_{\text{w,in}} \) is the internal temperature of the heated wall, and it is calculated starting from the temperature of the external surface of the mini-channel measured by the single K-type thermocouple in Figure 2, considering the heat conduction through the glass. \(T_{\text{sat}} \) is the fluid inlet saturation temperature estimated with the help of the NIST REFPROP libraries [14], knowing the fluid inlet pressure measured by the pressure sensor. Regarding the experimental errors, the mass flow rate accuracy is ±1% while the pressure accuracy is ± 0.5% in the pressure range of R-134a experiments (≈5.6 bar). The thermocouples have an accuracy of ± 0.2°C after calibration.

3. EXPERIMENTAL RESULTS
Thanks to the transparency of the ITO heaters, it is possible to visualize the earliest stages of the bubbles formation and the phase transition phenomena (Figure 3 and 4). The flow patterns visualization reveals that the first nucleation event always appears on the upper side of the heated tube for all the mass fluxes tested. Only after a further increase of the heat flux, the nucleation starts also on the lower side of the heated tube. When the nucleation appears, it is associated to a temperature drop. Hence the boiling curves presented in the next section evidence two temperature drops, that are respectively associated to the upper side and to the lower side onset of nucleate boiling.

The dimensionless numbers relative to the experimental conditions of Table 1 are given in Table 2.

Table 1 Summary of the experimental conditions

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Inlet pressure [MPa]</th>
<th>Tsat [°C]</th>
<th>G range [kg/m²s]</th>
<th>q'' [kW/m²]</th>
<th>x [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-134a</td>
<td>0.537-0.590</td>
<td>18-21</td>
<td>50-137</td>
<td>0-22</td>
<td>max 0.093</td>
</tr>
</tbody>
</table>

Table 2 The dimensionless number values for the experimental conditions

<table>
<thead>
<tr>
<th>Specific mass flow rate [kg/m²s]</th>
<th>Liquid phase Capillary number Ca(LO)</th>
<th>Liquid phase Reynolds number Re(LO)</th>
<th>Vapor phase Reynolds number Re(VO)</th>
<th>Boiling number Bl = (\frac{q''}{Gh_{fg}})</th>
<th>Confinement number Cn = (\left[\frac{1-x}{x} \right]^{0.9} \left[\frac{\rho_v}{\rho_L} \right]^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.00097</td>
<td>975</td>
<td>17357</td>
<td>0.0024</td>
<td>1.161</td>
</tr>
<tr>
<td>80</td>
<td>0.00156</td>
<td>1560</td>
<td>27771</td>
<td>0.0015</td>
<td>1.479</td>
</tr>
<tr>
<td>100</td>
<td>0.00194</td>
<td>1949</td>
<td>34713</td>
<td>0.0012</td>
<td>1.803</td>
</tr>
<tr>
<td>115</td>
<td>0.00223</td>
<td>2242</td>
<td>39920</td>
<td>0.0011</td>
<td>2.155</td>
</tr>
<tr>
<td>137</td>
<td>0.00266</td>
<td>2671</td>
<td>47557</td>
<td>0.0009</td>
<td>3.023</td>
</tr>
</tbody>
</table>

3.1 Boiling curves and flow patterns

The heat flux versus ΔT_{sat} represents the boiling curve obtained during the experiments. In Figure 3 and 4 the boiling curves and the flow patterns corresponding to \(G = 115 \text{ kg/m²s} \) and \(G = 137 \text{ kg/m²s} \) are presented. The red line corresponds to the increasing in the heat flux, while the green line to the heat power decreasing. The boiling curves and the flow patterns corresponding to the other mass fluxes tested in this paper are presented in [15].
Figure 3 Boiling curve and flow patterns associated to points A2, B1, B2 and to $q''=22$ kW/m2 for $G=115$ kg/m2s and a maximum vapor quality of 0.04.

Figure 4 Boiling curve and flow patterns associated to points A2, B1, B2 and to $q''=22$ kW/m2 for $G=137$ kg/m2s and a maximum vapor quality of 0.035.

As usual, the values of wall superheat during the increasing of the heat flux are different from those obtained during the heat flux reduction (“boiling hysteresis”). Two main regions,
namely *single phase forced convective region* and *boiling flow region*, are clearly identified in the figures above. Regarding the red lines in Figure 3 and 4, the heat flux increases almost linearly with the increasing in the wall superheat in the single phase convective region. The liquid refrigerant in contact with the tube internal surface soon becomes superheated, whereas the fluid bulk may remain saturated or even slightly subcooled. Further increase in the heat flux results in an increased wall superheat; vapor nuclei are activated and the boiling process occurs in the upper side of the tube. The ONB heat transfer mechanism causes the heating surface temperature to drop, resulting in a reduction of the wall temperature (A2 in Figure 3 and 4). A further increase of the heat flux results in an increase of the number of bubble sites and the wall superheat is again slowly increasing.

In our experiment however a second temperature drop is clearly recognizable. From the visualizations it is possible to enlighten that this second temperature drop occurs when the nucleation starts also in the lower side of the heater. Hence such temperature drop (B2 in Figure 3 and 4) is due to a heterogeneous but non-uniform flow boiling process.

In order to further clarify the nomenclature A1, A2, B1, B2 used in the figures above, it is important to define:

- A1 as the “upper side” ONB point; it corresponds to the maximum heat flux value at which only liquid phase exists;
- A2 corresponds to the maximum temperature drop occurring after A1. Then a further increase of the heat input level results in an increase of wall superheat;
- B1 is the “lower side” ONB, defined as the maximum wall superheat below which boiling is still only activated in the upper side of the heater.
- B2 corresponds to the maximum temperature drop occurring after B1.

In B2 the nucleation starts also in the lower part of the heater. Afterwards boiling occurs more uniformly on both the upper and lower tube surfaces, and the red curve is showing a more regular trend, since the wall superheat increases almost linearly with the heat flux.

3.3 Hypothesis on the origins of non-uniform onset nucleate boiling

Four hypotheses were made by the authors to explain why in our experiment the nucleation always starts in the upper side of the heater:

- the hydrostatic difference of pressure between the upper side and the lower side of the heater could cause a difference in saturation temperature, which could be responsible for the non-uniform boiling;
- a different surface roughness of the glass tube could influence the nucleation process;
- the ITO coating could have been spattered with a non homogeneous thickness.

We have then achieved the following answers:

- the hydrostatic difference of pressure in a channel having 4 mm internal diameter at 20°C is forty times lower than the pressure needed to increase the saturation temperature of 1°C;

- the surface roughness of the glass is in the order of the nanometers and no scratch or defect is optically noticeable on the surface at least at the microscale;

- the “upper side” and the “lower side” ONB were observed repeating the experiment using all eight different ITO heaters in different positions along the tube;

- since the plasma coating procedure can originate the same non-uniformity for all the 8 heaters, the experiment was then repeated after rotating the tube of 180°. It was confirmed that the boiling always starts in the upper side of the heater.

Additionally the low thermal diffusivity of the glass, used for the tubes, is of course amplifying the effects of the non-uniform distribution of nucleation sites, since the internal wall conduction is not able to reduce thermal gradients.

A possible temperature gradient inside the refrigerant flow could be a reason for such phenomenon, even if the inlet of the minichannel is at least 600mm (150 D.) far from the last geometrical change of the tube, which occurs just after the Coriolis flow meter, named M in Figure 1.

A further possibility to explore is that, because of the presence of gas inside the refrigerant, a number of gas molecules will accumulate in form of nanobubbles on the inner tube surface [16,17,18]. The presence of gas inside the refrigerant, according to the standard Ahri 700-2011, can be estimated as 1.5% vol at 298 K. Due to buoyancy forces the number of the nanobubbles will be higher on the top side with respect to the bottom side. These pre-existing air embryos entrapped in the flow and concentrated in the upper side of the mini-channel could be the responsible for the starting of the nucleation on the upper side.

3.4 Heat transfer coefficients

From each boiling curve obtained decreasing the heat flux, it was possible to calculate the heat transfer coefficient according to the equation:

\[
q'' = h \left(T_{\text{win}} - T_{\text{sat}} \right)
\]

(2)

In Figures 5-7 the heat transfer coefficients are presented with the error bars; the uncertainties are calculated according to the theory of error propagation, starting from the errors on the heat.
flux and on the wall superheat. In Table 3 the sensor accuracy and the estimated uncertainties of the derived quantities are summarized.

<table>
<thead>
<tr>
<th>Sensors accuracy</th>
<th>Mass flow rate</th>
<th>Pressure (at ≈ 5.6 bar)</th>
<th>K-type thermocouples (after calibration)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±1%</td>
<td>± 0.5%</td>
<td>± 0.2°C</td>
</tr>
<tr>
<td>Maximum estimated uncertainty</td>
<td>Heat flux</td>
<td>Wall superheat</td>
<td>Heat transfer coefficient</td>
</tr>
<tr>
<td></td>
<td>±4%</td>
<td>±7%</td>
<td>±8%</td>
</tr>
</tbody>
</table>

Table 3 Summary of the sensor accuracy and the estimated uncertainties of the derived quantities

Boiling curves and the associated flow patterns for G = 50, 80 and 100 kg/m²s are presented in [15]. It is important to point out that the data obtained for G = 50 kg/m²s have the peculiarity that phase A1 may not correspond only to a single liquid phase, since first nucleation events may occur even before, without a measurable variation of the wall superheat. This effect is due to the fact that a single thermocouple for each heater is not able to capture the local temperature variation around the bubble nucleation site. Such measurement weakness may produce larger experimental inaccuracies, even with the current high precision, especially for low wall superheat temperatures.
Figure 5 The heat transfer coefficient h, evaluated from each boiling curve - obtained decreasing the heat flux - as function of the heat flux.

In Figure 5 for a heat flux about 9 kW/m2 the data obtained with $G=100$ kg/m2s apparently decrease more than the data with $G=80$ kg/m2s, keeping lower values until the minimum heat flux of 2 kW/m2 is reached. Such a trend inversion is explained considering only the experimental accuracy, since there is no relevant change in the flow patterns.
Figure 6 The heat transfer coefficient h, calculated from each boiling curve - obtained decreasing the heat flux - as function of the wall superheat.
Figure 7 The heat transfer coefficient h, calculated from each boiling curve - obtained decreasing the heat flux - as function of the vapor quality.

The heat transfer coefficient, estimated at one fixed heat flux value or one wall superheat value, increases with the mass flux level. For such very low vapor qualities, the heat transfer coefficient increases with the vapor quality, meaning that more active bubbling (in terms of frequency and nucleation site density) is increasing the heat transfer from the wall. Note that this appears to be in contrast with many experimental studies, among which [19,20,21], which predict a decrease of the heat transfer coefficient with vapor quality.

A final important consideration is related to the comparison of the obtained heat transfer coefficient values with some common correlations of the literature, summarized in table 4, which are given in Figure 8 a,b,c.
(a)

(b)
Figure 8 Comparison of the heat transfer coefficients, calculated from the experimental boiling curve decreasing the heat flux (G=115kg/m²s, vapor quality range 0<x<0.04, open symbols) with standard correlations in literature summarized in Table 4 (lines).

<table>
<thead>
<tr>
<th>Name of the correlation</th>
<th>Equation and experimental range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lazarek and Black [23]</td>
<td>$h = \left(30 \text{Re}_{LO}^{0.857} \cdot \text{Bl}^{0.714}\right) \frac{k_L}{d_h}$</td>
</tr>
<tr>
<td></td>
<td>R-113 $14<q''<380 \text{kW/m}²$ 125<G<750 kg/m²s $0<x<0.6$</td>
</tr>
<tr>
<td>Tran et al. [22]</td>
<td>$h = 8.4 \cdot 10^3 \cdot \left(\text{We}_{LO} \cdot \text{Bl}\right)^{0.1} \left(\frac{\rho_L}{\rho_v}\right)^{-0.4}$</td>
</tr>
<tr>
<td></td>
<td>R-12 $3.6<q''<129 \text{kW/m}²$ 44<G<832 kg/m²s $0<x<0.94$</td>
</tr>
<tr>
<td>Lee and Mudawar [24]</td>
<td>$h = 3.856 X^{0.267} h_L$ for $x<0.05$</td>
</tr>
<tr>
<td></td>
<td>R-134a, 159<q''<938 kW/m² 127<G<654 kg/m²s</td>
</tr>
</tbody>
</table>

Table 4 The empirical correlations of Lazarek and Black [23], Tran et al [22] and Lee and Mudawar [24]

The correlations of Lazarek and Black [23] and Tran et al. [22] do not contain the vapor quality parameter. Therefore, since the present experiments have been done in a narrow range of vapor qualities, the correlation of Lee and Mudawar [24] was also considered. They proposed a correlation for the heat transfer coefficient for R-134a and water in three ranges of
vapor quality: x<0.05, 0.05<x<0.55,0.55<x<1. The correlation for vapor quality lower than 0.05 was implemented in the comparison even if the heat flux range for such correlation is higher than 22 kW/m² (Figure 8). The heat transfer coefficient \(h_L \) for the liquid phase was calculated according to Shah correlation [25].

The measured heat transfer coefficient values are in good agreement with the correlation of Lazarek et al. [22], with larger deviations with respect to the correlation of Tran et al. [23], while a strong departure with the correlation of Lee and Mudawar [24] appears. This correlation, for vapor quality lower than 0.05, was in fact validated only for water and none of the R-134a data. For a heat flux up to 22 kW/m², the values of the heat transfer coefficients are strictly related to the increase of bubble number and frequency. The estimated values of the heat transfer coefficient appear to be lower than expected, interpolating data for higher vapor quality values. The use of a single thermocouple on the minichannel and the fact that the glass has a low thermal conductivity, partially motivate the under-evaluation of the heat transfer coefficient.

4. CONCLUSIONS

Saturated heterogeneous non-uniform flow boiling of R134a in horizontal mini-channel has been experimentally investigated at five different mass flux levels (50, 80, 100, 115 and 137 kg/m²s) with particular attention on the visualization of the onset of nucleate boiling. The boiling curves evidence two different temperature drops and this is due to the fact that nucleation always starts in the upper side of the heaters and only increasing the heat flux, activating more nucleation sites, boiling starts later in the lower part of the heater. The flow pattern visualizations highlight this non-uniform boiling. The reason for such behavior is still under investigation and it should be also linked to the low thermal diffusivity of the glass, which is rarely used in flow boiling studies as tube material. The heat transfer coefficient has been estimated as function of the heat flux and of the wall superheat for all tested mass fluxes. It emerges that, as expected, the heat transfer coefficient values, estimated at a fixed heat flux value or wall superheat value, increases with the mass flux level. With such very low vapor quality values, the heat transfer coefficients appear to increase with the vapor quality, i.e. with the number and frequency of bubble detaching from the surface. The estimated values of the heat transfer coefficients are ranging from 500 W/m²K to 2000 W/m²K, slightly less than expected values, obtained from previous standard empirical correlations.
5. NOMENCLATURE

Bl Boiling number
\(d_h\) Hydraulic diameter, m
\(h\) Heat transfer coefficient, W/m\(^2\) K
\(h_L\) Heat transfer coefficient for the liquid phase, W/m\(^2\) K
\(k_L\) Liquid thermal conductivity, W/mK
\(q''\) Heat flux, W/m\(^2\)
\(Q_{\text{max}}\) Maximum power supplied to the fluid, W
\(Re_{L0}\) Reynolds number for total flow assumed as liquid
\(T_{\text{win}}\) Internal temperature of the heated wall, K
\(T_{\text{sat}}\) Saturation temperature, K
\(We_{L0}\) Weber number for total flow assumed as liquid
\(x\) Vapour quality
\(X\) Martinelli parameter
\(\Delta T_{\text{sh}}\) Wall superheat, K
\(\rho_L\) Liquid density, kg/m\(^3\)
\(\rho_V\) Vapor density, kg/m\(^3\)

ACKNOWLEDGEMENTS

The work was financed by Italian Ministry of Universities through the project PRIN 2009 “Experimental and Numerical Analysis of Two-Phase Phenomena in Microchannel Flows for Ground and Space Applications”. We would like to acknowledge Dr. Stefano Dall’Olio for the experimental set-up in Dalmine, Dr. Stefano Zinna and Eng. Antonello Cattide for the help and the discussions.

REFERENCES

