The geochemistry and petrogenesis of the
Paleoproterozoic du Chef dyke swarm, Quebec,
Canada

T. Jake. R. Ciborowski*1,2, Andrew C. Kerr1, Iain McDonald1, Richard E. Ernst3, Hannah S.
R. Hughes1, and Matthew J. Minifie1.

1School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10
3AT, UK
2Petrolab Ltd., C Edwards Offices, Gweal Pawl, Redruth, Cornwall, TR15 3AD, UK
3Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa,
Ontario, K1S 5B6, Canada & Ernst Geosciences, 43 Margrave Ave. Ottawa, Ontario K1T
3Y2, Canada

*email: jake.ciborowski@live.co.uk Telephone: +44 (0) 2920 876420

Abstract
The du Chef dyke swarm in southern Quebec, Canada is composed of numerous northeast
trending, greenschist-amphibolite facies, gabbronoritic dykes that crop out either side of the
Grenville Front. The age of the du Chef swarm (2408±3 Ga) has led previous authors to
suggest a genetic link between the du Chef dykes and coeval swarms (including the
Ringvassoy, Scourie, Widgemooltha and Sebanga) preserved on other Archean cratons.
These now disparate dyke swarms are proposed to have formed in response to mantle plume-
induced continental breakup during the early Proterozoic. This work represents the first
geochemical study of the du Chef dykes and shows that the swarm evolved through fractional
crystallisation of a single tholeiitic parent magma that remained largely uncontaminated
during its residence and ascent through the crust. We also show that the primary magma for
the du Chef swarm was derived through partial melting of an enriched region of the mantle,
similar in composition to the modern-day HIMU reservoir and that the magma produced was
significantly hotter than the ambient mantle at the time. We contend that the du Chef dykes
are the product of early Proterozoic mantle plume magmatism and may help pinpoint an
ancient hotspot centre that initiated continental break up along the margin of the Superior Craton at ~2.4 Ga. Other dyke swarms proposed to be genetically linked with the du Chef dykes record a distinctly different petrogenetic history to that of the du Chef dykes, as evidenced by their more volcanic arc-like geochemical signature. These contrasting geochemical signatures in supposedly cogenetic continental tholeiitic rocks may be evidence of early Proterozoic mantle heterogeneity sampled by the rising du Chef mantle plume.

1. Introduction

The du Chef dykes were first described by Cieleiski and Margole (1989) as a series of north-north east trending discordant intrusions which have a maximum thickness of 30 metres and a measurable strike length of up to several kilometres. The majority of the dykes crop out within the Grenville Province and have been amphibolitised and otherwise deformed by Grenvillian tectonism such that the igneous mineralogy is rarely preserved, being more commonly altered to garnet, amphibole, plagioclase, epidote and sphene (Cieleiski and Margole 1989). Krogh (1994) reports the only published age of the du Chef dykes and interprets the dykes to have been emplaced at 2408±3 Ma. This age is based on U-Pb analysis of two samples of magmatic zircons from a pegmatitic portion of a ~ 40 m wide amphibolitised du Chef dyke that was also sampled (DC007) by this study.

Several workers have noted that the age of the du Chef dykes, and other swarms that intrude the Superior Craton, overlap with those of dyke swarms preserved on the North Atlantic, Karelia, Zimbabwe and Yilgarn cratons (Ernst and Buchan 2002; Kulikov et al. 2010; Pirajno and Hoatson 2012). This coeval magmatism has been argued to represent the remnants of an early Proterozoic Large Igneous Province (LIP) that formed during mantle plume-driven breakup of an Archean supercontinent (Ernst and Buchan 2004; Söderlund et al. 2010).

This work presents the first whole-rock major and trace element data for du Chef dykes from either side of the Grenville Front. These data are used to characterise the petrogenetic evolution of the swarm, investigate potential mantle sources of the primary magmas, evaluate the swarms proposed mantle plume origins and, investigate potential genetic links with other coeval swarms preserved on other Archean cratons.

2. Regional Geology
The Superior Craton is the largest of the Archean cratons and forms the core of the Canadian Shield. It is composed of alternating, east-west trending granite-greenstone and metasedimentary terranes which are commonly in fault-bounded contact with each other. The granite-greenstones and intervening metasediments are widely considered to represent ancient volcanic arcs and accretionary prisms that were sutured and cratonised during the late Archean (e.g., Card 1990; Stachel et al. 2006). Superior Craton terranes which share a common tectonic history are grouped into a number of provinces, the largest being the Superior Province. On its eastern margin, the Superior Province is in fault-bounded contact with the Grenville Province (Fig. 1A), the latter being interpreted to be the eroded remnants of a Himalayan-style continental orogen caused by the collision of Baltica and Laurentia during the middle Proterozoic (Dufrechou and Harris 2013).

Near Chibougamau (Fig. 1B), the Superior Province to the west of the Grenville Front is composed of; (1) greenschist-facies bimodal volcanic rocks, banded iron formations and cherts of the Archean Roy Group (Leclerc et al. 2011); (2) conglomerates, sandstones, argillites and alkalic-shoshonitic volcanic rocks of the Archean Opemisca Group; (3) the ~2.73 Ga anorthositic Lac Dorè complex and other tonalitic intrusions; and (4) unconformable Proterozoic metasediments and bimodal volcanics of the Huronian Supergroup (Card 1990). Close to the margin of the Superior Province, the east-west trending lithotectonic boundaries of the Archean groups are deflected to the northeast before being truncated at the Grenville Front. Immediately east of the Grenville Front, the dominant lithotectonic trends are orientated northeast-southwest (parallel to the Grenville Front) and metamorphic grade reaches amphibolite-granulite facies (Cieleski and Margole 1989; Martignole and Martelat 2005).

3. Sample collection and petrography

Given the low topographic relief and dense vegetation of southwest Quebec, sample collection (Fig. 1) was limited to road cuts along highway 167, adjoining logging roads and a few isolated whale-back type exposures (Supplementary Figure 1A). In outcrop, the du Chef dykes are dark green-black in colour and range in thickness from 1-2 m, up to 40 m. The dykes are steeply dipping and generally trend northeast-southwest. Aside from these commonalities shared by all du Chef dykes, stark differences in appearance are observed between dykes from areas northwest of the Grenville Front to those preserved within the Front. The most readily observed difference is the nature of the dyke margins, in that the
dykes from outside of the Grenville Front typically preserving very sharp and regular
contacts with the country rock (Supplementary Figure 1A) while in contrast, the margins of
du Chef dykes from within the Grenville Front are more irregular with the dykes appearing to
finger into the country rock (Supplementary Figure 1B). Amphibolitised du Chef dykes
from within the Grenville Front also commonly preserve a foliated fabric and have
mineralogies characterised by occasionally abundant garnet (Supplementary Figure 1C),
while those from outside of the Grenville Front preserve igneous textures, particularly in the
coarser interiors of thicker dykes (Supplementary Figure 1D).

The amphibolitised du Chef dykes are generally equigranular and fine grained (Fig. 2A).
Amphibole dominates the mineralogy of the studied samples and shows a range of crystal
habits from euhedral, equant prisms to anhedral, irregular forms which commonly contain
very fine inclusions of quartz. The next most abundant mineral is plagioclase which forms
irregularly shaped crystals with well-developed twins that appear to fill the spaces between
the amphibole crystals. Accessory phases within such amphibolitised samples include biotite
which tends to form elongated lath shaped crystals intergrown with the amphibole, and both
pyrite and magnetite which form euhedral crystals or glomerocrysts distributed throughout
the rock (Fig. 2B).

Commonly, a planar foliation is observed in the amphibolitised du Chef dykes caused by
alignment of amphibole and plagioclase crystals into alternating bands (Fig. 2C). In some
samples, porphyroblasts of garnet are preserved as medium grained, euhedral crystals
distributed throughout the rock (Fig. 2D). Occasionally, the interiors of the garnets are filled
with fine grained inclusions of plagioclase, amphibole, biotite, and chlorite and often, the
garnets display atoll textures (Fig. 2E).

In less metamorphosed samples, from northwest of the Grenville Front, primary igneous
minerals and textures are partially preserved. Typically, the interiors of these dykes are
medium grained and inequigranular (Fig. 2F). The most abundant primary phase is olivine,
which forms euhedral relict grains that have been altered to magnesite, serpentine and iron
oxides, predominantly along grain boundaries and crystal fractures. Plagioclase tends to form
very elongate laths which appear to grow into the olivine crystals. Alteration of the
plagioclase is characterised by very fine grained placements of quartz and sericite
concentrated along crystal margins (Fig. 2G). Very little primary pyroxene remains in the
studied samples, but its original existence of confirmed by pseudomorphic replacements by
calcite and amphibole.

In summary, the du Chef dykes record metamorphic mineral assemblages which range from
lower greenschist to upper amphibolite facies. The transition from greenschist to amphibolite
facies parallels the trend of the Grenville Front in this region (Fig. 1). The extent to which
this metamorphism has affected the geochemistry of the dykes is explored in the subsequent
sections.

4. Geochemistry

4.1 Analytical procedures
Sample preparation and analysis was carried out at Cardiff University. Weathered surfaces
and in-filled fractures were removed with a rock saw prior to analysis. The sawed samples
were crushed into ~5 mm chips using a steel jaw crusher and powdered in an agate planetary
ball mill. Approximately 2 g of the milled powder was ignited in a furnace at 900 °C for two
hours in order to determine loss on ignition values.

Whole-rock major element, trace element and rare earth element (REE) data were obtained
following Li metaborate fusion (Minifie et al. 2013). Major element and Sc abundances were
determined using a JY Horiba Ultima 2 Inductively Coupled Plasma Optical Emission
Spectrometer (ICP-OES). Trace elements were analysed by a Thermo X Series 2 Inductively
Coupled Plasma Mass Spectrometer (ICP-MS). International reference material JB-1A was
run with each sample batch to constrain the accuracy and precision of the analyses. Relative
standard deviations show precision of 1–5% for most major and trace elements for JB-1A. 2σ
values encompass certified values for the vast majority of elements. Full analytical results
including repeat runs of standard basalt JB-1A can be found in the Supplementary
Information. Representative, whole-rock major element and trace element data for the du
Chef dyke samples are presented in Table 1.

4.2 Element mobility
As the du Chef dyke swarm crops out within the Grenville Province where metamorphic
facies reaches up to amphibolite-granulite facies (Martignole and Martelat 2005) and samples
show abundant alteration (Fig. 2), the effects of secondary element remobilisation must be
considered. At metamorphic conditions above lower amphibolite facies the normally
immobile high field strength elements (HFSE) including the REE are expected to become
more mobile (Pearce 1996) and therefore any scatter observed in plots involving these
elements for the du Chef samples may reflect their metamorphic history. As the HFSE are
incompatible in the main rock forming minerals, they should plot on linear arrays when
plotted against each other for a suite of unaltered rocks formed from a common fractionating
magma, whereas secondary remobilisation of elements is likely to result in a scattered trend
(Cann 1970).

Good linear correlations are observed between Zr and the REE and other HFSE ($R^2 \geq 0.7$),
indicating that secondary remobilisation of these elements was very limited. Conversely, the
incompatible large ion lithophile elements (LILE) show much more scattered correlations
with Zr which indicates that these elements have undergone sub-solidus remobilisation. A
subset of these graphs is shown in (Supplementary Figure 2). The following petrogenetic
discussion will largely be limited to using the HFSE which likely record near-primary
concentrations.

4.3 Classification

The total alkali silica diagram is a common way to geochemically classify igneous rocks,
however since Na and K have been remobilised in these dykes the total alkali silica diagram
cannot be used for the du Chef dykes. Instead, we use the Zr/Ti vs. Nb/Y diagram (Fig. 3)
since the elements used in this classification have been shown to have remained immobile.
On this diagram, the du Chef dykes plot as a fairly tight cluster within the subalkaline basalt
and basaltic andesite fields.

4.4 Major elements

The du Chef dykes are broadly basaltic in major element composition (Table 1) with, MgO
ranging from 5.4 to 9.0 wt.% and are relatively TiO$_2$ poor (1.0 to 2.7 wt.%). Na$_2$O, K$_2$O,
TiO$_2$, and MnO do not show any obvious correlation with MgO while SiO$_2$, Al$_2$O$_3$, and CaO
have positive, and P$_2$O$_5$ negative, correlations with MgO (Supplementary Figure 3). Fe$_2$O$_3$
shows an enrichment trend characteristic of of tholeiitic magmas. The poor correlations
observed between the alkalis, and MgO are further evidence of element mobility in the du
Chef dykes while the better correlations observed between MgO, Fe$_2$O$_3$, SiO$_2$, Al$_2$O$_3$ and
CaO may suggest that the dykes evolved through the fractional crystallisation and removal of
olivine, clinopyroxene and plagioclase from a tholeiitic parent magma.
4.5 Trace elements

The du Chef dykes have relatively low concentrations of Cr and Ni (Fig. 4) which show positive correlations with MgO. Other compatible trace elements including Sc and V have more scattered but negative correlations with MgO. Those trace elements which are incompatible during basaltic fractionation show slightly scattered negative correlations with MgO. On similar graphs where relatively immobile Zr (Supplementary Figure 2) is used instead of MgO as an index of fractionation, the incompatible elements plot on much tighter, positively correlated arrays suggesting that the du Chef dykes may have formed by the fractionation of a single parent magma.

Total rare earth element (REE) abundances in the du Chef dykes range between 15 – 49 × chondritic values and when plotted on chondrite-normalised REE diagrams (Fig. 5), the dykes show sub-parallel trends enriched in light REE [(La/Sm)\textsubscript{N} = 1.9 ± 0.3] relative to the HREE which themselves are characterised by (Gd/Yb)\textsubscript{N} ratios of 1.31 ± 0.26. Variable but slightly positive Eu anomalies may indicate the presence of cumulate plagioclase in the magma. The enrichment of the light REE relative to the heavy REE increases with fractionation (Supplementary Figure 4) while the Eu anomaly becomes more negative.

5. Modelling and discussion

5.1 Fractional crystallisation

The linear geochemical trends exhibited by the du Chef dykes suggest that the dykes evolved from a single fractionating magma. In this section, we will evaluate fractional crystallisation as a potential mechanism for generating the geochemical trends observed in the du Chef dykes. Fractional crystallisation of the most primitive du Chef dyke sample (DC011) has been modelled using the PELE computer software program (Boudreau 1999). This sample is unlikely to be a primary magma given its relatively evolved nature (~ 9 wt.% MgO), however, it represents the most primitive magma of the suite and hence, the closest estimate of the primary magma for the suite.

PELE is a Windows®-compatible computer program which allows the user to evaluate crystallisation of silicate magma at varying physical conditions. Boudreau (1999) used published descriptions of the database and numerical models used by the MELTS (Ghiors & Sack 1995) software (currently usable as a JAVA® enabled web applet from
http://melts.ofm-research.org/applet.html) to produce a modified version of the program for use with Windows® systems (PELE). For a detailed description of the workings of PELE, the reader is referred to Ghiorso & Sack (1995), Asimov and Ghiorso (1998) and Boudreau (1999). The major element geochemical trends for the du Chef dykes have been modelled using six different scenarios of varying pressure and water content (Table 2). All models use a quartz-fayalite-magnetite (QFM) oxygen buffer and calculate the composition of the liquid at 10% crystallisation intervals.

It is not entirely obvious which model best approximates the major element composition of the du Chef dykes, partly due to the scatter resulting from sub-solidus element mobility, but also because for certain elements (e.g., CaO and P₂O₅), the models predict similar trends (Fig. 6). However, high-pressure fractional crystallisation of the du Chef dyke parent magma is supported by the TiO₂, SiO₂, Al₂O₃ and Fe₂O₃ compositions, the trends of which (when plotted against MgO) are best approximated by models 5 (7 kbar) and 6 (10 kbar). Overall, model 5, which models fractional crystallisation of a magma with a composition equal to that of sample DC011 at 7 kbar, provides the most consistent fit with the du Chef dyke compositions.

The 7 kbar model predicts that crystallisation of the DC011 parent magma begins at ~1261 °C with olivine being the first mineral to crystallise. Clinopyroxene joins olivine at ~1249 °C after ~3% of the magma has crystallised. Clinopyroxene is followed by plagioclase soon after at 1242 °C after ~6% of the magma has crystallised. Once the magma has cooled to 1212 °C and ~44% of it has crystallised, orthopyroxene joins the crystallising assemblage before leaving again once the magma cools to 1170 °C and ~65% of it has crystallised. Olivine, clinopyroxene and plagioclase continue to crystallise until the magma reaches 1160 °C, at which point 70% of the original parent magma has crystallised and the remaining liquid contains less MgO than the most evolved du Chef dyke sampled (Supplementary Figure 5).

5.2 Crustal contamination
Trace element models have been constructed to determine whether the du Chef parental magma evolved via simple fractional crystallisation (FC) or through assimilation-fractional crystallisation (AFC). Fractional crystallisation of the du Chef parent magma was modelled using the modal mineral abundances predicted by the 7 kbar major element model and the partition coefficients of Bedard (2001) using equation 1 (see appendix). AFC uses the same
parameters as the FC model, the composition of felsic crust (Rudnick and Gao 2003) and an assimilation/fractionation rate (r) of 0.1 (equations 2 and 3).

On primitive mantle-normalised multi-element diagrams (Fig. 7), the du Chef dykes show similar subparallel trends to those observed on chondrite normalised REE diagrams (Fig. 5). All of the du Chef samples show enrichments in the most incompatible elements relative to the more compatible HFSE and have relative depletions in Th [(Th/La)$_N$ = 0.37 ± 0.18]. The dykes also show negative Nb anomalies (Nb$_N$/Nb$_N^*$ = 0.8 ± 0.2)1 and variable Ti anomalies (Ti$_N$/Ti$_N^*$ = 1.1 ± 0.5)2 the magnitude of which do not correlate with degree of fractionation (Supplementary Figure 4). The du Chef dykes are further characterised by predominantly negative Zr-Hf anomalies. These trace element characteristics result in the majority of the du Chef dykes plotting in mantle plume-related oceanic plateau basalt fields on the Nb/Y vs. Zr/Y and Zr/Nb vs. Nb/Th diagrams (Fig. 8).

Models which use trace elements to model FC and AFC using the parameters and assemblages predicted at various degrees of crystallisation at 7 kbar are shown in Fig. 7. Both FC and AFC models predict the general trends of increasing incompatible element abundances observed in the du Chef dykes. However, the AFC model indicates that as fractionation of the parent magma continues, the magmas develop an increasingly negative Nb-Ta anomaly. The lack of correlation between Nb$_N$/Nb$_N^*$ and Zr or MgO (used as an index of fractionation) in the du Chef dykes (Supplementary Figure 4) shows that contamination of the fractionating du Chef parent magma by felsic crust is unlikely. Instead, fractionation of the du Chef dyke parent magma, with no significant input of material is our preferred mechanism for explaining the trace element variation observed in the dykes. However, despite the lack of systematic change in the dyke’s Nb$_N$/Nb$_N^*$ values, some of the scatter on Supplementary Figure 4 may be the product of in situ contamination of individual dykes by heterogeneous lithologies which make up the ~10,000 km2 area within the Grenville Province (Martignole and Martelat 2005) that the du Chef dykes crop out in (Fig. 1).

In summary, the major element chemistry of the du Chef dykes is best explained by a model that involves a body of basaltic magma containing ~9 wt.% MgO that ponded at ~21 km (~7 kbar) and fractionated olivine, clinopyroxene, plagioclase orthopyroxene. Trace element

1 Nb$_N^*$ = (Th$_N$ + La$_N$) / 2

2 Ti$_N^*$ = (Sm$_N$ + Gd$_N$) / 2
modelling indicates that during fractionation, this du Chef parent magma was not
contaminated by felsic country rock. Instead, the parent liquid evolved via simple fractional
crystallisation, over the course of which, the magma chamber was periodically tapped and
liquids removed to form individual du Chef dykes which record the geochemical evolution of
the parent magma. It is however likely that some of these evolved melts became
contaminated by the various crustal components into which the du Chef dyke swarm
intruded, thus producing some of the HFSE variation observed in Fig. 7.

5.3 Primary Magmas and Mantle Source

The relatively evolved nature of the du Chef dykes (MgO ≤ 9 wt.%o) suggests that even the
most primitive dyke does not represent an unfractionated primary magma derived through
partial melting of mantle peridotite. To characterise the primary magmas of such evolved
suites, Herzberg and Asimow (2008) developed the PRIMELT2 software which can calculate
primary magma compositions for evolved lavas. PRIMELT2 uses forward and inverse
models to compute a melt fraction which is capable of, (a) being formed by partial melting of
fertile mantle peridotite and (b) producing the major element composition of the evolved lava
sample through fractionation or accumulation of olivine alone.

Fractional crystallisation models which use sample DC011 as a parent magma composition
predict that olivine is the first mineral to crystallise (Supplementary Figure 5). This, along
with the ~9 wt.% MgO content of DC011, suggests that this sample could feasibly have
evolved solely through olivine fractionation of a primary mantle melt (Herzberg and Asimow
2008). Indeed, the application of PRIMELT2 to sample DC011 produces a successful result,
whereby the major element composition of sample DC011 can be replicated by 30% partial
melting of fertile mantle peridotite to produce a picritic primary magma containing 19.8 wt.%
MgO, 11.4 wt.% Al₂O₃ and 46.2 wt.% SiO₂. Fractional crystallisation of this primary
magma, such that 32% of it crystallises as olivine, produces a remaining liquid fraction with a
major element composition similar to sample DC011. By using these degrees of partial
melting and olivine fractionation, we can investigate the possible mantle sources for the du
Chef dykes.

Five mantle reservoirs are modelled (see appendix): Depleted MORB Mantle (DMM),
Enriched Mantle (EM1 and EM2) and Primitive Mantle (PM) and High ²³⁸U/²⁰⁴Pb Mantle
(HIMU). The composition of DMM has been constrained by Workman and Hart (2005) from
the trace element depletion trends of abyssal peridotites. The compositions of the EM1 and EM2 reservoirs are estimated from inverse modelling of the compositions of EM1 and EM2 basalts from the Tristan da Cuhna, Gough, Samoan and Society islands (Willbold and Stracke 2006). The HIMU reservoir is similarly estimated from inverse modelling using the compositions of basalts from Tubuai, Mangaia and Rurutu (Chauvel et al. 1992). The composition of PM is derived from studies of chondritic meteorites and refractory element ratios of mantle peridotites (McDonough and Sun 1995). It should be noted that projecting the existence of these reservoirs, predominantly recognised from modern intraplate basaltic rocks, back into the Palaeoproterozoic is questionable. However, these reservoir compositions can be used to characterise the enriched or depleted nature of the du Chef mantle source region.

The 30% partial melting needed to form the du Chef primary magma (as predicted by the PRIMELT2 model for sample DC011) may be modelled using batch melting (Equation 4) for garnet lherzolites (Johnson et al. 1990) from the five different mantle reservoirs described above. Garnet lherzolite was chosen for the models as all of the du Chef dykes have relatively depleted HREE patterns (Fig. 5) which indicates that mantle melting occurred within the garnet stability field but was of an insufficient degree to melt all of the garnet in the source. A garnet-bearing source may also be implied by the negative Zr-Hf anomalies observed in the du Chef dyke, which for other intracontinental basaltic rocks, have been interpreted to have been imparted on primary magmas by the segregation of magmas from a mantle plume with residual majorite garnet, at depths of 400 to 600 km (Xie et al. 1993).

The PRIMELT2 model predicts that, following partial melting, 32% of the primary magma crystallised as olivine, with the remaining liquid fraction approximating to the composition of sample DC011. The affects of this fractionation on the trace element chemistry of the primary magmas derived from the three different mantle reservoirs can be calculated using equation 1 and the olivine/melt partition coefficients of Bedard (2001) with 32% fractionation (F = 0.32).

Fig. 9. shows the Primitive Mantle-normalised multi-element patterns for sample DC011 for which PRIMELT2.XLS was able to define partial melting and fractionation parameters. Also plotted are the compositions of magmas formed by fractional crystallisation of primary magmas derived from melting of garnet lherzolites from the DMM, EM1, EM2, HIMU and
PM mantle reservoirs using the parameters of melting and fractionation stated above. **Fig. 9.**

shows that a fractionated magma, derived from a primitive mantle garnet lherzolite is an unlikely parent magma for the du Chef dykes as such a liquid is characterised by \((\text{Th/La})_N = 1.01\) in contrast to sample DC which has a much lower ratio \([(\text{Th/La})_N = 0.43\]. The modelled fractionated magma derived from the DMM reservoir has a more similar \((\text{Th/La})_N\) ratio to the du Chef dykes but also records distinctly lower trace element abundances \((2.2 \times\text{ primitive mantle})\) than sample DC011 \((5.4 \times \text{ primitive mantle})\). The fractionated magma derived from the enriched mantle (EM1 and EM2) reservoirs have very similar element abundances and primitive mantle-normalised patterns as sample DC011 for the least incompatible trace elements as well as comparable \((\text{Th/La})_N\) ratios, but fails to replicate the LREE enrichment observed in the du Chef dykes \([(\text{La/Sm})_N = 1.90 \pm 0.33\] and instead show slight LREE depletion \([(\text{La/Sm})_N = 0.81\]. The fractionated magma derived from partial melting of the HIMU reservoir records similar MREE-HREE ratios to sample DC011, but predicts much higher abundances as well as contrasting \((\text{Th/La})_N\) ratios. Further modelling which involves fractionation of primary magmas formed via melting an EM1 garnet lherzolite previously modified by the addition of a crustal component, [as might occur during melting of lower crustal material by hot upwelling mantle (e.g., Xu et al. 2002)], is also unsuccessful in replicating the trace element composition of sample DC011, since the composition of the modelled magma in this instance is characterised by \((\text{Th/La})_N\) ratios > 1 and negative Nb-Ta anomalies.

This indicates that fractional crystallisation of partial melts of the mantle reservoirs described here is not a viable mechanism for producing the parent magma of the du Chef dykes. An alternative source is suggested by the work of Polat et al. (1998) who observed similar trace element characteristics in ultramafic rocks of the late-Archaean Schreiber-Hemlo and White River-Dayohessarah greenstone belts of the Superior Craton. In this earlier work, Polat et al. (1998) suggested that primary magmas characterised by trace element signatures like those observed in the du Chef dykes were the product of deep-seated, mantle plume magmas derived from subducted and recycled oceanic lithosphere albeit with a different trace element signature than the HIMU reservoir modelled above.

5.4. Thermal Plume

Using overlapping U-Pb ages of mafic suites, Söderlund et al. (2010) have suggested that the du Chef dyke swarm is correlative with some of the Sebanga dykes preserved on the
Zimbabwe craton. Söderlund et al. (2010) used this coeval geochronological data to suggest that during the late-Archaean and early-Proterozoic, the Superior, Karelia and Zimbabwe cratons were ‘nearest neighbours’ in a larger supercontinent (Ernst and Bleeker 2010; Söderlund et al. 2010) which began to rift apart approximately 2.4 Ga during an episode of mantle plume-driven continental breakup.

Mantle plumes active in the modern era such as those beneath Iceland and Hawaii are characterised by anomalously hot upper mantle hundreds of degrees hotter than the ambient mantle (Wolfe et al. 1997; Bijwaard and Spakman 1999; Li et al. 2000). For ancient magmatic systems the existence of anomalously high-temperature magmatism (indicative of a mantle plume) can be investigated by examining the geochemistry of primary magmas and calculating their mantle potential temperature (T_p) – the temperature the mantle would reach if it was brought to the surface adiabatically without melting (McKenzie and Bickle 1988).

The T_p of the mantle source of a primary magma may be recorded in its petrology and major element geochemical composition and can be inferred by calibration and parameterisation of laboratory data to the magma in question. PRIMELT2.XLS software developed by Herzberg and Asimow (2008) can be used to calculate T_p. Once PRIMELT2.XLS obtains a primary magma composition, the MgO concentration is used to calculate T_p where the total uncertainty due to potential errors in determining the MgO content of primary magmas is ± 60°C (2σ) (Herzberg and Asimow 2008; Herzberg et al. 2010).

PRIMELT2.XLS was able to calculate the potential temperature of 1567°C for sample DC011. By comparing this potential temperature with temperature estimates of the ambient upper mantle in the Palaeoproterozoic, we can determine whether the magmatism which formed the du Chef dykes was derived from an anomalously hot upper mantle (i.e., plume) as is predicted by the mantle plume theory (Campbell 2007), and confirmed by observations of the mantle beneath Hawaii and Iceland (Bijwaard and Spakman 1999; Li et al. 2000) and elsewhere (Montelli et al. 2004; Waite et al. 2006;). There is a general consensus that the mantle was significantly hotter during the Palaeoproterozoic than it is today (Fig. 10). Exactly how much hotter is a contentious point as different models predict different cooling histories for the Earth. Richter (1988) presents models in which the starting temperature of the upper mantle at 4.5 Ga was either 2000°C or 2500°C which cooled at a continuously decreasing rate to reach a present day value of
1350°C. Regardless of the two starting temperatures used by Richter (1988), his model predicts that at ~2.4 Ga the temperature of the ambient upper mantle was ~1480°C. Korenaga (2008) has proposed a model which is characterised by an initial increase in mantle T_p from ~1650°C at 4.5 Ga to ~1700°C at 3.6 Ga. This initial temperature increase is followed by an increasingly rapid drop in T_p to a present day values of 1350°C. Davies (2009) suggests that the low urey ratio (heat produced by radioactive decay/heat loss) used by Korenaga (2008) is extreme and instead favours a model of constantly decreasing temperature from an initial upper mantle temperature of 1800°C at 4.5 Ga to reach a modern day temperature of 1300°C.

The T_p of sample DC011 (1567°C) which yields a primary magma estimate with PRIMELT2.XLS is plotted in Fig. 10 along with the three secular cooling models described above. Sample DC011 records a T_p 87°C and 179°C higher than is predicted for the ~2.4 Ga mantle by the models of Richter (1988) and Davies (2009) respectively, but 138°C lower than is predicted by the model of Korenaga (2008). Determining the veracity of the disparate models presented in Fig. 10 is beyond the scope of this study. However, the model of Korenaga (2008) has been seriously challenged by Davies (2009) and Karato (2010). Davies (2009) disagrees with the assumption of Korenaga (2008) that plate thickness is determined by dehydration during melting at mid-ocean ridges and instead suggests that plate thickness is determined by conductive cooling. Davies (2009) also argues that the model of Korenaga (2008) is overly sensitive to the radius of curvature of bending plates at subduction zones. Karato (2010) demonstrates that plate curvature at subduction zones depends on the flexural rigidity which in turn, depends on plate thickness. This finding by Karato (2010) essentially invalidates the model of Korenaga (2008) who assumes that the radius of curvature of bending plates remains constant. On this basis therefore we prefer the models of Richter (1988) and Davies (2009) in estimating the temperature of the upper mantle during the emplacement of the du Chef dykes at ~2.4 Ga.

Other studies have estimated the temperature of the upper mantle at various points during the Archaean (Ohata et al. 1996; Galer and Mezger 1998; Komiya et al. 2004). Galer and Mezger (1998) examined the regional metamorphic grade of ten undisturbed Archaean granite-greenstone segments and showed that metamorphic facies exposed at the surface today are indicative of burial pressures of ~1.5 kbar. From these burial pressures, Galer and Mezger (1998) infer that, since 3 Ga, the undisturbed portions of cratons have been uplifted ~5 km, implying a mean continental thickness of ~46 km when the cratons were stabilised at ca. 2.5
Ga (Bleeker 2003). Galer and Mezger (1998) argue that during the Archaean, in order to
maintain isostatic equilibrium with the cratons, the oceanic crust would have had to have
been ~14 km thick (assuming a relatively fixed cratonic mass through time). Under these
conditions, Galer and Mezger (1998) infer an upper mantle temperature of ~90 °C hotter than
the present day at 3 Ga. Using a linear cooling rate of 30 °C Myr\(^{-1}\) (which is comparable to
estimates of the present day cooling rate of the Earth), the temperature of the upper mantle at
2.4 Ga can be estimated as 1422 °C.

Ohta et al. (1996) used the geochemistry of Archaean MORB rocks preserved in a 3.1-3.3 Ga
accretionary complex in Pilbara, Western Australia to constrain the ambient temperature of
the upper mantle at 3.1-3.3 Ga to be 1400 °C. Using this temperature of 1400 °C as an
estimate for \(T_P\) at 3.2 Ga and a simplistic, linear cooling modelling between 1400 °C at 3.2
Ga and 1350 °C today, the temperature of the mantle at 2.4 Ga can be estimated at 1387 °C.

In a similar study, Komiya et al. (2004) use the geochemistry of Archaean MORB rocks
preserved in the 3.8 Ga Isua Supracrustal Belt, southwest Greenland to constrain upper
mantle temperatures at that time to be ~1480 °C. Again, using a simplistic, linear cooling
model between 1480 °C at 3.8 Ga and 1350 °C today, the temperature of the upper mantle at
2.46 Ga can be estimated at 1432 °C. These three estimates of upper mantle temperature at
~2.4 Ga using the work of Ohta et al. (1996), Galer and Mezger (1998) and Komiya et al.
(2004) are all significantly lower than the \(T_P\) recorded by sample DC011 (180 °C, 135 °C and
145 °C respectively). This reinforces the evidence presented by Fig. 10 that the du Chef dyke
swarm formed from anomalously hot mantle plume.

In summary, secular cooling models of the Earth’s mantle suggest that the du Chef dykes
originated from anomalously hot Early-Proterozoic mantle according to the models of Davies
(2009) and Richter (1988) as well as other estimates derived from studies of Archaean mantle
rocks (Ohta et al. 1996; Galer and Mezger 1998; Komiya et al. 2004). This evidence, along
with consistent trace element geochemistry suggests that the du Chef dykes are the product
of mantle plume-driven magmatism as proposed by Ernst and Buchan (2004) and Söderlund
et al. (2010). However, alternate models of the cooling of the mantle [e.g., Korenaga (2008)
and Abbot et al. (1994)] indicate that the du Chef dykes are not the product of an
anomalously hot mantle plume. Continued research into the thermal evolution of the mantle
and derivation of robust models which estimate the temperature of the upper mantle at ~2.4
Ga will help better determine the nature of the source and petrogenesis of the du Chef dykes.
5.5. Correlative units

Based on coeval U-Pb ages, other workers have proposed that the du Chef dykes may be genetically linked to the 2408 ± 2 Ma (Söderlund et al. 2010) Sebanga dykes preserved on the Zimbabwe craton, as well as potentially to the 2403 ± 3 Ma (Kullerud et al. 2006) Ringvassoy dykes (Kola-Karelia craton), 2410 ± 2 Ma (Doehler and Heaman 1998) Widgiemooltha swarm and the 2418 ± 3 Ma (Nemchin and Pidgeon 1998) Scourie dyke swarm. These other igneous provinces, comprised of numerous, predominantly doleritic intrusions are similar to the du Chef dyke swarm in terms of areal extent and their continental tholeiitic basalt geochemical affinities (Kullerud et al. 2006; Hughes et al. submitted). Together with the du Chef dyke swarm, these suites may represent a hitherto unknown early Proterozoic Large Igneous Province (Ernst and Buchan 2002).

Comparisons of the trace element geochemistry of the du Chef dykes and their potential correlative suites (Fig. 11) for which such data exists in the literature allow for some interesting observations to be made. Firstly, there is a striking similarity between all of the suites in terms of their general enrichments in the most incompatible REE relative to the least incompatible elements. Of the three suites potentially correlative with the du Chef swarm, it is the Scourie dykes which have the most similar trace element geochemistry to the du Chef dykes. These two dyke swarms share comparable average trace element abundances as well as similarly large Zr-Hf and Y anomalies, which may indicate the two swarms were derived from a common mantle reservoir that underwent a similar degree of partial melting. However, in contrast to the du Chef dykes, both the Ringvassoy and Scourie dykes all have high (Th/La)N ratios and are characterised by significant, negative Nb-Ta anomalies.

The trace element signatures of these three suites are common in igneous rocks formed in modern volcanic arc settings (e.g., Pearce and Peate 1995). Thus, when observed in palaeoproterozoic igneous rocks, these signatures have often been interpreted as evidence of formation in such an environment (e.g., Van Boening and Nabelek 2008). However, the volcanic arc-like trace element compositions recorded by the du Chef dykes are common in the palaeoproterozoic igneous record and are observed in rocks of a similar age which preserve field evidence that entirely precludes a subduction-related setting including radiating dyke swarms and flood basalt provinces (Phinney and Halls 2001; Jolly 1987). For such suites which record trace element signatures like those observed in the dykes potentially
correlative with du Chef, alternative petrogenetic mechanisms which may impart an arc-like trace element geochemistry have been suggested. Potential explanations include; (1) partial melting of subduction-modified sub-continental lithospheric mantle (Sandeman and Ryan 2008); (2) a widespread ancient mantle reservoir, fundamentally different to those observed in the modern mantle (Vogel et al. 1998); or, (3) the contamination of mantle melts by continental crust during fractionation in deep crustal magma chambers (e.g., Nelson et al. 1990).

Thus the differences in the trace element chemistry observed between the du Chef swarm and its potential correlative suites do not necessarily rule out a cogenetic origin. Instead, these differences may be the product of melting of a compositionally heterogeneous mantle plume head that had sampled various mantle reservoirs or lithospheric components during its transit through the crust and mantle, (cf., Kerr et al. 2002; Ketchum et al. 2013) or potentially through the mutual evolution of cogenetic mantle melts in disparate crustal magma chambers (Bleeker 2004). Further work aimed at better defining the ages of these coeval suites would better constrain any potential temporal link, while further palaeomagnetic work would characterise the possibility of a 'nearest neighbour' situation (Bleeker 2003) between the suites at ~2.4 Ga (Fig. 12).

6. Summary and conclusions

1. The primary magma of the du Chef was a low-Ti, low-Al picritic basalt, derived from partial melting of a garnet-bearing mantle peridotite similar in trace element composition (but more enriched) to the modern-day HIMU reservoir.

2. The magma produced by this partial melting was significantly higher in temperature than the ambient mantle and may indicate the presence of a mantle plume beneath the Superior craton during the early Proterozoic.

3. Prior to intrusion of the dykes, the du Chef primary magma ponded in a mid-deep level crustal chamber where it fractionated olivine, clinopyroxene, plagioclase and orthopyroxene but with little assimilation of host rocks. This mid-deep level crustal chamber was periodically tapped, with fractions of melt migrating from the chamber to be emplaced as individual du Chef dykes.

4. Individual dykes were contaminated insitu by the host rocks and inherited variable, but minor, negative anomalies in some of the HFSE.
5. Units proposed to be correlative with the du Chef dykes have slightly different
geochemical compositions that may be the result of differences in source reservoir or
contamination by crust or lithospheric mantle

7. Acknowledgements
This study forms part of a Ph.D. dissertation undertaken by T.J.R.C. at the University of
Cardiff, United Kingdom. A. Okrugin’s assistance in the field is acknowledged. J.
Strongman, J. Fletcher and J. Pett are thanked for their permission of use of the petrographic
equipment at Petrolab Ltd. L. Badham, A. Oldroyd, L. Woolley and P. Fisher are thanked for
their help in preparation and analysis of samples.

8. References
Asimow, P. D., and Ghiorso, M. S., 1998. Algorithmic modifications extending MELTS to calculate subsolidus
Bleeker, W., 2004. Taking the pulse of planet Earth: a proposal for a new multi-disciplinary flagship project in
25*, 201-203.
10, 7-11.
Precambrian Research, 48, 99-156.
Geological Survey of Canada*.
Condie, K.C., 2005. High field strength element ratios in Archean basalts - a window to evolving sources of
Ernst, R. E. and Bleeker, W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences, 47, 695-739.

Kulikov, V. S., Bychkova, Y. V., Kulikova, V. V. and Ernst, R., 2010. The Vetreny Poyas (Windy Belt) subprovince of southeastern Fennoscandia: An essential component of the ca. 2.5–2.4Ga Subnian large igneous provinces. Precambrian Research, 183, 589-601.

<table>
<thead>
<tr>
<th>Sample</th>
<th>DC001</th>
<th>DC002</th>
<th>DC003</th>
<th>DC004</th>
<th>DC005</th>
<th>DC006</th>
<th>DC007</th>
<th>DC008</th>
<th>DC011</th>
<th>DC012</th>
<th>DC014</th>
<th>DC015</th>
<th>DC016</th>
<th>DC017</th>
<th>DC018</th>
<th>DC019</th>
<th>DC200</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTM (E)</td>
<td>550620</td>
<td>550635</td>
<td>560353</td>
<td>565583</td>
<td>573015</td>
<td>573462</td>
<td>584834</td>
<td>552965</td>
<td>552965</td>
<td>587572</td>
<td>584680</td>
<td>581748</td>
<td>578738</td>
<td>578768</td>
<td>582583</td>
<td>582578</td>
<td>582595</td>
</tr>
<tr>
<td>UTM (N)</td>
<td>549708</td>
<td>549712</td>
<td>547944</td>
<td>547151</td>
<td>546719</td>
<td>546686</td>
<td>546371</td>
<td>545825</td>
<td>545825</td>
<td>545999</td>
<td>546029</td>
<td>546029</td>
<td>546832</td>
<td>548122</td>
<td>548145</td>
<td>548254</td>
<td>548250</td>
</tr>
</tbody>
</table>

Majors (wt.%)

- **SiO₂**: 45.57 - 47.40
- **TiO₂**: 2.38 - 1.62
- **Al₂O₃**: 14.40 - 13.50
- **Fe₂O₃**: 15.94 - 14.88
- **MnO**: 0.22 - 0.20
- **MgO**: 5.73 - 6.04
- **CaO**: 9.92 - 9.73
- **Na₂O**: 2.38 - 2.14
- **K₂O**: 1.21 - 1.10
- **LOI**: 1.58 - 1.27

Total: 99.64 - 99.12

Traces (ppm)

- **Sc**: 37.3 - 39.2
- **Zr**: 156.1 - 135.9
- **V**: 325.6 - 262.1
- **Cr**: 97.9 - 169.3
- **Co**: 52.4 - 49.6
- **Ni**: 72.3 - 81.4
- **Cu**: 90.2 - 81.6
- **Ga**: 20.5 - 18.3
- **Rb**: 30.1 - 25.9
- **Sr**: 260.5 - 217.9
- **Y**: 31.8 - 27.2
- **Nb**: 9.47 - 5.33
- **La**: 17.12 - 12.49
- **Ce**: 38.44 - 27.68
- **Pr**: 5.15 - 3.82
- **Nd**: 22.39 - 17.01
- **Sm**: 5.23 - 4.07
- **Eu**: 1.76 - 1.60
- **Gd**: 5.29 - 4.20
- **Tb**: 0.86 - 0.70
- **Ho**: 0.99 - 0.85
- **Er**: 2.72 - 2.39
- **Tm**: 0.43 - 0.38
- **Yb**: 2.91 - 2.59
- **Lu**: 0.44 - 0.41
- **Hf**: 3.72 - 3.14
- **Ta**: 0.68 - 0.36
- **Pb**: 4.11 - 4.57
- **Th**: 1.16 - 0.72
- **U**: 0.29 - 0.20

Table 1. Geochemical data for the du Chef dykes studied
<table>
<thead>
<tr>
<th>Model</th>
<th>Pressure</th>
<th>H$_2$O content</th>
<th>Oxygen buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>1 kbar</td>
<td>0%</td>
<td>QFM</td>
</tr>
<tr>
<td>Model 2</td>
<td>1 kbar</td>
<td>1%</td>
<td>QFM</td>
</tr>
<tr>
<td>Model 3</td>
<td>3 kbar</td>
<td>0%</td>
<td>QFM</td>
</tr>
<tr>
<td>Model 4</td>
<td>5 kbar</td>
<td>0%</td>
<td>QFM</td>
</tr>
<tr>
<td>Model 5</td>
<td>7 kbar</td>
<td>0%</td>
<td>QFM</td>
</tr>
<tr>
<td>Model 6</td>
<td>10 kbar</td>
<td>0%</td>
<td>QFM</td>
</tr>
</tbody>
</table>

Table 2. Model parameters used in Pele for investigation fractional crystallisation of sample DC011
<table>
<thead>
<tr>
<th>Trace element (ppm)</th>
<th>Mantle Reservoirs</th>
<th>Components used in reservoir construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMM</td>
<td>EM1</td>
</tr>
<tr>
<td>Th</td>
<td>0.008</td>
<td>0.029</td>
</tr>
<tr>
<td>Nb</td>
<td>0.149</td>
<td>0.376</td>
</tr>
<tr>
<td>Ta</td>
<td>0.010</td>
<td>0.027</td>
</tr>
<tr>
<td>La</td>
<td>0.192</td>
<td>0.596</td>
</tr>
<tr>
<td>Ce</td>
<td>0.550</td>
<td>1.753</td>
</tr>
<tr>
<td>Pr</td>
<td>0.107</td>
<td>0.288</td>
</tr>
<tr>
<td>Nd</td>
<td>0.581</td>
<td>1.466</td>
</tr>
<tr>
<td>Zr</td>
<td>5.1</td>
<td>12.6</td>
</tr>
<tr>
<td>Hf</td>
<td>0.157</td>
<td>0.359</td>
</tr>
<tr>
<td>Sm</td>
<td>0.239</td>
<td>0.517</td>
</tr>
<tr>
<td>Eu</td>
<td>0.096</td>
<td>0.199</td>
</tr>
<tr>
<td>Ti</td>
<td>716</td>
<td>1433</td>
</tr>
<tr>
<td>Gd</td>
<td>0.358</td>
<td>0.716</td>
</tr>
<tr>
<td>Tb</td>
<td>0.070</td>
<td>0.134</td>
</tr>
<tr>
<td>Dy</td>
<td>0.505</td>
<td>0.922</td>
</tr>
<tr>
<td>Y</td>
<td>3.33</td>
<td>5.77</td>
</tr>
<tr>
<td>Ho</td>
<td>0.115</td>
<td>0.204</td>
</tr>
<tr>
<td>Er</td>
<td>0.35</td>
<td>0.60</td>
</tr>
<tr>
<td>Tm</td>
<td>0.054</td>
<td>0.092</td>
</tr>
<tr>
<td>Yb</td>
<td>0.365</td>
<td>0.616</td>
</tr>
<tr>
<td>Lu</td>
<td>0.058</td>
<td>0.095</td>
</tr>
</tbody>
</table>

Table 3. Trace element compositions of mantle reservoirs used in this study. See text for description of data.
Fig. 1. Geological map of area showing sample locations. Geology modified after Thériault et al. (2012).
Fig. 3. Zr/Ti vs. Nb/Yb classification diagram (Pearce 1996) for the du Chef dykes.
Fig. 4. Bivariate diagrams of selected trace elements vs. MgO for the du Chef dykes.
Fig. 5. Chondrite-normalised rare earth element plot of the du Chef dykes (B). End-members and normalising factors from Sun and McDonough (1989).
Fig. 6. Bivariate diagrams of selected major elements vs. MgO trends for the du Chef dykes and those predicted by fractional crystallisation of a parent magma with a composition equal to that of sample DC011. Markers on the model lines are placed at intervals of 10% crystallisation.
Fig. 7. Primitive mantle-normalised trace element diagrams for the du Chef dykes. Also plotted are the trends predicted by FC (A) and AFC (B) using the starting composition of sample DC011 and the model constraints explained in the text.

Fig. 8. Zr/Nb vs. Nb/Th diagram (A) and Nb/Y vs. Zr/Y diagram (B) for the du Chef dykes. Field boundaries and end-member compositions from Condie (2005). Abbreviations: PM = Primitive Mantle, DM = shallow depleted mantle, ARC = arc related basalts, NMORB = normal mid-ocean ridge basalt, OPB = oceanic plateau basalt, OIB = oceanic island basalt, DEP = deep depleted mantle, EN = enriched component, REC = recycled component.
Fig. 9. Primitive mantle-normalised trace element diagrams for the du Chem sample DC011. Also plotted are the trends predicted for magmas which have evolved through 32% fractional crystallisation of olivine, following 30% batch partial melting of garnet lherzolites (Johnston et al. 1990) from the EM1, DMM and PM mantle reservoirs.

Fig. 10. Temperature evolution of the upper mantle through time using different models; A – Davies (2009); B – Richter (1988); C – Korenaga (2008).
Fig 11. Primitive mantle-normalised bivariate diagrams showing composition of the du Chef dykes, Ringvassoy dykes (Kullerud et al. 2006) and Scourie dykes (Hughes et al. submitted).

Fig. 12. Ca. 2.4 Ga continental reconstructions showing potential configurations of the eastern margin of Superia. Abbreviations for dyke swarms: Km – Kaminak, Ma – Matachewan, Ka – Karelian, dC – du Chef, Sb – Sebanga, Cs – Crystal Springs, Mi – Mistassini, Qaqluit Nunaat, and Rv – Ringvassoy. Modified after Soderlund et al. (2010).
Supplementary Figure 1. Photographs of the du Chef dykes: A – road cut exposure on highway 167; B – whale-back exposure equivalent to site sampled by Krogh et al. (1984); C – linear contact between du Chef dyke (dC) and the country rock (CR) northwest of the Grenville Front; D – irregular contact between du Chef dyke and country rock from within the Grenville Front; E – garnet-bearing amphibolitised du Chef dyke; F – du Chef dyke with preserved igneous texture.
Supplementary Figure 2. Bivariate diagrams of selected elements plotted against Zr for the du Chef dykes.
Supplementary Figure 3. Bivariate diagrams of selected major elements vs. MgO for the du Chef dykes.
Supplementary Figure 4. Selected bivariate diagrams for the du Chef dykes. [EuN* = (GdN + SmN) / 2; NbN* = (ThN + LaN) / 2; TiN* = (GdN + SmN) / 2]
Supplementary Figure 5. Diagram showing the cumulative proportions of crystals formed by fractional crystallisation of the du Chef parent at 10% intervals of crystallisation.